Suppr超能文献

数字乳腺断层合成中的要点处理

Gist processing in digital breast tomosynthesis.

作者信息

Wu Chia-Chien, D'Ardenne Nicholas M, Nishikawa Robert M, Wolfe Jeremy M

机构信息

Brigham and Women's Hospital, Visual Attention Laboratory, Department of Surgery, Boston, Massachusetts, United States.

Harvard Medical School, Boston, Massachusetts, United States.

出版信息

J Med Imaging (Bellingham). 2020 Mar;7(2):022403. doi: 10.1117/1.JMI.7.2.022403. Epub 2019 Dec 18.

Abstract

Evans et al. (2016) showed that radiologists can classify the mammograms as normal or abnormal at above-chance levels after a 250-ms exposure. Our study documents a similar gist signal in digital breast tomosynthesis (DBT) images. DBT is a relatively new technology that creates a three-dimensional image set of slices through the volume of the breast. It improves performance over two-dimensional (2-D) mammography but at a cost in reading time. In the experiment presented, radiologists ( ) viewed "movies" of DBT images from single breasts for an average of 1.5 s per case. Observers then marked the most likely lesion position on a blank outline and rated each case on a six-point scale from (1) certainly normal to (6) certainly recall. Results show that radiologists can discriminate normal from abnormal DBT cases at above-chance levels as in 2-D mammography. Ability was correlated with experience reading DBT. Observers performed at above-chance levels, even on those images where they could not localize the target, suggesting that this is a global signal that could prove valuable in the clinic.

摘要

埃文斯等人(2016年)表明,放射科医生在250毫秒的曝光后,能够以高于随机水平的准确率将乳房X光片分类为正常或异常。我们的研究记录了数字乳腺断层合成(DBT)图像中类似的要点信号。DBT是一项相对较新的技术,它通过乳房的体积创建一组三维切片图像。它比二维(2-D)乳房X光检查性能有所提高,但阅读时间会增加。在本实验中,放射科医生平均每例花费1.5秒查看单乳DBT图像的“动态影像”。然后,观察者在空白轮廓上标记最可能的病变位置,并根据从(1)肯定正常到(6)肯定召回的六点量表对每个病例进行评分。结果表明,放射科医生能够像在二维乳房X光检查中一样,以高于随机水平的准确率区分DBT检查中的正常和异常病例。能力与阅读DBT的经验相关。观察者的表现高于随机水平,即使在那些无法定位目标的图像上也是如此,这表明这是一个在临床上可能很有价值的全局信号。

相似文献

1
Gist processing in digital breast tomosynthesis.
J Med Imaging (Bellingham). 2020 Mar;7(2):022403. doi: 10.1117/1.JMI.7.2.022403. Epub 2019 Dec 18.
2
5
Breast cancer detection: Comparison of digital mammography and digital breast tomosynthesis across non-dense and dense breasts.
Radiography (Lond). 2021 Nov;27(4):1027-1032. doi: 10.1016/j.radi.2021.04.002. Epub 2021 Apr 25.
6
Developing breast lesion detection algorithms for digital breast tomosynthesis: Leveraging false positive findings.
Med Phys. 2022 Dec;49(12):7596-7608. doi: 10.1002/mp.15883. Epub 2022 Aug 19.
9
Radiologists' performance in reading digital breast tomosynthesis with and without synthesized views for cancer detection.
Br J Radiol. 2023 Apr 1;96(1145):20220704. doi: 10.1259/bjr.20220704. Epub 2023 Mar 16.
10
Lesion detection in digital breast tomosynthesis: human reader experiments indicate no benefit from the integration of information from multiple planes.
J Med Imaging (Bellingham). 2023 Feb;10(Suppl 1):S11915. doi: 10.1117/1.JMI.10.S1.S11915. Epub 2023 Jun 26.

引用本文的文献

2
Early signs of cancer present in the fine detail of mammograms.
PLoS One. 2023 Apr 5;18(4):e0282872. doi: 10.1371/journal.pone.0282872. eCollection 2023.
4
Comparable prediction of breast cancer risk from a glimpse or a first impression of a mammogram.
Cogn Res Princ Implic. 2021 Nov 6;6(1):72. doi: 10.1186/s41235-021-00339-5.
5
Characteristics of expert search behavior in volumetric medical image interpretation.
J Med Imaging (Bellingham). 2021 Jul;8(4):041208. doi: 10.1117/1.JMI.8.4.041208. Epub 2021 Jul 14.
6
What can an echocardiographer see in briefly presented stimuli? Perceptual expertise in dynamic search.
Cogn Res Princ Implic. 2020 Jul 21;5(1):30. doi: 10.1186/s41235-020-00232-7.

本文引用的文献

1
Five Factors that Guide Attention in Visual Search.
Nat Hum Behav. 2017 Mar;1(3). doi: 10.1038/s41562-017-0058. Epub 2017 Mar 8.
2
Do target detection and target localization always go together? Extracting information from briefly presented displays.
Atten Percept Psychophys. 2019 Nov;81(8):2685-2699. doi: 10.3758/s13414-019-01782-9.
3
Detecting the "gist" of breast cancer in mammograms three years before localized signs of cancer are visible.
Br J Radiol. 2019 Jul;92(1099):20190136. doi: 10.1259/bjr.20190136. Epub 2019 Jun 5.
4
Radiologists can detect the 'gist' of breast cancer before any overt signs of cancer appear.
Sci Rep. 2018 Jun 7;8(1):8717. doi: 10.1038/s41598-018-26100-5.
6
A half-second glimpse often lets radiologists identify breast cancer cases even when viewing the mammogram of the opposite breast.
Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):10292-7. doi: 10.1073/pnas.1606187113. Epub 2016 Aug 29.
7
Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammographic Risk Scoring.
IEEE Trans Med Imaging. 2016 May;35(5):1322-1331. doi: 10.1109/TMI.2016.2532122. Epub 2016 Feb 18.
8
The gist of the abnormal: above-chance medical decision making in the blink of an eye.
Psychon Bull Rev. 2013 Dec;20(6):1170-5. doi: 10.3758/s13423-013-0459-3.
9
If you don't find it often, you often don't find it: why some cancers are missed in breast cancer screening.
PLoS One. 2013 May 30;8(5):e64366. doi: 10.1371/journal.pone.0064366. Print 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验