Suppr超能文献

用于心脏事件可解释性患者特异性预测的循环和影像生物标志物的机器学习整合:一项前瞻性研究。

Machine learning integration of circulating and imaging biomarkers for explainable patient-specific prediction of cardiac events: A prospective study.

作者信息

Tamarappoo Balaji K, Lin Andrew, Commandeur Frederic, McElhinney Priscilla A, Cadet Sebastien, Goeller Markus, Razipour Aryabod, Chen Xi, Gransar Heidi, Cantu Stephanie, Miller Robert Jh, Achenbach Stephan, Friedman John, Hayes Sean, Thomson Louise, Wong Nathan D, Rozanski Alan, Slomka Piotr J, Berman Daniel S, Dey Damini

机构信息

Department of Imaging and Medicine and the Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

出版信息

Atherosclerosis. 2021 Feb;318:76-82. doi: 10.1016/j.atherosclerosis.2020.11.008. Epub 2020 Nov 13.

Abstract

BACKGROUND AND AIMS

We sought to assess the performance of a comprehensive machine learning (ML) risk score integrating circulating biomarkers and computed tomography (CT) measures for the long-term prediction of hard cardiac events in asymptomatic subjects.

METHODS

We studied 1069 subjects (age 58.2 ± 8.2 years, 54.0% males) from the prospective EISNER trial who underwent coronary artery calcium (CAC) scoring CT, serum biomarker assessment, and long-term follow-up. Epicardial adipose tissue (EAT) was quantified from CT using fully automated deep learning software. Forty-eight serum biomarkers, both established and novel, were assayed. An ML algorithm (XGBoost) was trained using clinical risk factors, CT measures (CAC score, number of coronary lesions, aortic valve calcium score, EAT volume and attenuation), and circulating biomarkers, and validated using repeated 10-fold cross validation.

RESULTS

At 14.5 ± 2.0 years, there were 50 hard cardiac events (myocardial infarction or cardiac death). The ML risk score (area under the receiver operator characteristic curve [AUC] 0.81) outperformed the CAC score (0.75) and ASCVD risk score (0.74; both p = 0.02) for the prediction of hard cardiac events. Serum biomarkers provided incremental prognostic value beyond clinical data and CT measures in the ML model (net reclassification index 0.53 [95% CI: 0.23-0.81], p < 0.0001). Among novel biomarkers, MMP-9, pentraxin 3, PIGR, and GDF-15 had highest variable importance for ML and reflect the pathways of inflammation, extracellular matrix remodeling, and fibrosis.

CONCLUSIONS

In this prospective study, ML integration of novel circulating biomarkers and noninvasive imaging measures provided superior long-term risk prediction for cardiac events compared to current risk assessment tools.

摘要

背景与目的

我们旨在评估一种综合机器学习(ML)风险评分的性能,该评分整合了循环生物标志物和计算机断层扫描(CT)测量值,用于无症状受试者心脏硬事件的长期预测。

方法

我们研究了来自前瞻性EISNER试验的1069名受试者(年龄58.2±8.2岁,男性占54.0%),这些受试者接受了冠状动脉钙化(CAC)评分CT、血清生物标志物评估和长期随访。使用全自动深度学习软件从CT中定量心外膜脂肪组织(EAT)。检测了48种已确立和新发现的血清生物标志物。使用临床风险因素、CT测量值(CAC评分、冠状动脉病变数量、主动脉瓣钙化评分、EAT体积和衰减)以及循环生物标志物训练ML算法(XGBoost),并使用重复10倍交叉验证进行验证。

结果

在14.5±2.0年时,发生了50例心脏硬事件(心肌梗死或心源性死亡)。ML风险评分(受试者操作特征曲线下面积[AUC]为0.81)在预测心脏硬事件方面优于CAC评分(0.75)和ASCVD风险评分(0.74;两者p=0.02)。在ML模型中,血清生物标志物在临床数据和CT测量值之外提供了额外的预后价值(净重新分类指数0.53[95%CI:0.23-0.81],p<0.0001)。在新发现的生物标志物中,基质金属蛋白酶-9、五聚素3、多聚免疫球蛋白受体和生长分化因子-15对ML的变量重要性最高,反映了炎症、细胞外基质重塑和纤维化的途径。

结论

在这项前瞻性研究中,与当前风险评估工具相比,新的循环生物标志物和非侵入性成像测量值的ML整合为心脏事件提供了更优的长期风险预测。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验