Suppr超能文献

基于深度学习的全自动心脏外膜脂肪组织容量定量分析及其与 2 型糖尿病患者 CAC 评分和微血管/大血管并发症的关系:多中心 EPIDIAB 研究。

Fully automated epicardial adipose tissue volume quantification with deep learning and relationship with CAC score and micro/macrovascular complications in people living with type 2 diabetes: the multicenter EPIDIAB study.

机构信息

Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.

Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, Chemin des Bourrely, APHM, Hôpital Nord, 13915 Marseille Cedex 20, Marseille, France.

出版信息

Cardiovasc Diabetol. 2024 Sep 3;23(1):328. doi: 10.1186/s12933-024-02411-y.

Abstract

BACKGROUND

The aim of this study (EPIDIAB) was to assess the relationship between epicardial adipose tissue (EAT) and the micro and macrovascular complications (MVC) of type 2 diabetes (T2D).

METHODS

EPIDIAB is a post hoc analysis from the AngioSafe T2D study, which is a multicentric study aimed at determining the safety of antihyperglycemic drugs on retina and including patients with T2D screened for diabetic retinopathy (DR) (n = 7200) and deeply phenotyped for MVC. Patients included who had undergone cardiac CT for CAC (Coronary Artery Calcium) scoring after inclusion (n = 1253) were tested with a validated deep learning segmentation pipeline for EAT volume quantification.

RESULTS

Median age of the study population was 61 [54;67], with a majority of men (57%) a median duration of the disease 11 years [5;18] and a mean HbA1c of7.8 ± 1.4%. EAT was significantly associated with all traditional CV risk factors. EAT volume significantly increased with chronic kidney disease (CKD vs no CKD: 87.8 [63.5;118.6] vs 82.7 mL [58.8;110.8], p = 0.008), coronary artery disease (CAD vs no CAD: 112.2 [82.7;133.3] vs 83.8 mL [59.4;112.1], p = 0.0004, peripheral arterial disease (PAD vs no PAD: 107 [76.2;141] vs 84.6 mL[59.2; 114], p = 0.0005 and elevated CAC score (> 100 vs  < 100 AU: 96.8 mL [69.1;130] vs 77.9 mL [53.8;107.7], p < 0.0001). By contrast, EAT volume was neither associated with DR, nor with peripheral neuropathy. We further evidenced a subgroup of patients with high EAT volume and a null CAC score. Interestingly, this group were more likely to be composed of young women with a high BMI, a lower duration of T2D, a lower prevalence of microvascular complications, and a higher inflammatory profile.

CONCLUSIONS

Fully-automated EAT volume quantification could provide useful information about the risk of both renal and macrovascular complications in T2D patients.

摘要

背景

本研究(EPIDIAB)旨在评估心外膜脂肪组织(EAT)与 2 型糖尿病(T2D)的微血管和大血管并发症(MVC)之间的关系。

方法

EPIDIAB 是 AngioSafe T2D 研究的事后分析,该研究是一项多中心研究,旨在确定抗高血糖药物对视网膜的安全性,并包括筛查糖尿病视网膜病变(DR)的 T2D 患者(n=7200),并对 MVC 进行深入表型分析。在纳入后(n=1253),对接受心脏 CT 进行 CAC(冠状动脉钙化)评分的患者进行了经验证的深度学习分割管道的 EAT 体积定量测试。

结果

研究人群的中位年龄为 61[54;67]岁,大多数为男性(57%),中位疾病持续时间为 11 年[5;18],平均 HbA1c 为 7.8±1.4%。EAT 与所有传统心血管危险因素显著相关。EAT 体积随着慢性肾脏病(CKD 与无 CKD:87.8[63.5;118.6] vs 82.7 mL[58.8;110.8],p=0.008)、冠状动脉疾病(CAD 与无 CAD:112.2[82.7;133.3] vs 83.8 mL[59.4;112.1],p=0.0004)、外周动脉疾病(PAD 与无 PAD:107[76.2;141] vs 84.6 mL[59.2;114],p=0.0005)和 CAC 评分升高(>100 与<100 AU:96.8 mL[69.1;130] vs 77.9 mL[53.8;107.7],p<0.0001)而显著增加。相比之下,EAT 体积与 DR 或周围神经病变均无相关性。我们进一步证明了存在一组 EAT 体积高但 CAC 评分低的患者。有趣的是,该组更可能由年轻女性组成,她们的 BMI 较高、T2D 持续时间较短、微血管并发症发生率较低、炎症水平较高。

结论

全自动 EAT 体积定量可提供有关 T2D 患者肾和大血管并发症风险的有用信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fc2/11373274/56d8ea79b095/12933_2024_2411_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验