Rupp Lindsay C, Bergquist Jake A, Zenger Brian, Gillette Karli, Narayan Akil, Tate Jess D, Plank Gernot, MacLeod Rob S
Scientific Computing and Imaging Institute, University of Utah, SLC, UT, USA.
Nora Eccles Cardiovascular Research and Training Institute, University of Utah, SLC, UT, USA.
Comput Cardiol (2010). 2021 Sep;48. doi: 10.23919/cinc53138.2021.9662950.
Fiber structure governs the spread of excitation in the heart; however, little is known about the effects of physiological variability in fiber orientation on epicardial activation. To investigate these effects, we implemented ventricular simulations of activation using rule-based fiber orientations, and robust uncertainty quantification algorithms to capture detailed maps of model sensitivity. Specifically, we implemented polynomial chaos expansion, which allows for robust exploration with reduced computational demand through an emulator function to approximate the underlying forward model. We applied these techniques to examine the activation sequence of the heart in response to both epicardial and endocardial stimuli within the left ventricular free wall and variations in fiber orientation. Our results showed that physiological variation in fiber orientation does not significantly impact the location of activation features, but it does impact the overall spread of activation. Future studies will investigate under which circumstances physiological changes in fiber orientation might alter electrical propagation such that the resulting simulations produce misleading outcomes.
纤维结构控制着心脏中兴奋的传播;然而,关于纤维方向的生理变异性对心外膜激活的影响却知之甚少。为了研究这些影响,我们使用基于规则的纤维方向进行心室激活模拟,并使用强大的不确定性量化算法来获取模型敏感性的详细图谱。具体来说,我们实施了多项式混沌展开,通过模拟器函数来近似潜在的正向模型,从而在减少计算需求的情况下进行强大的探索。我们应用这些技术来检查左心室游离壁内心外膜和心内膜刺激以及纤维方向变化时心脏的激活序列。我们的结果表明,纤维方向的生理变化不会显著影响激活特征的位置,但会影响激活的整体传播。未来的研究将调查在哪些情况下纤维方向的生理变化可能会改变电传播,从而使模拟结果产生误导性结果。