Suppr超能文献

SigUNet:基于语义分割的信号肽识别。

SigUNet: signal peptide recognition based on semantic segmentation.

机构信息

Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan.

出版信息

BMC Bioinformatics. 2019 Dec 20;20(Suppl 24):677. doi: 10.1186/s12859-019-3245-z.

Abstract

BACKGROUND

Signal peptides play an important role in protein sorting, which is the mechanism whereby proteins are transported to their destination. Recognition of signal peptides is an important first step in determining the active locations and functions of proteins. Many computational methods have been proposed to facilitate signal peptide recognition. In recent years, the development of deep learning methods has seen significant advances in many research fields. However, most existing models for signal peptide recognition use one-hidden-layer neural networks or hidden Markov models, which are relatively simple in comparison with the deep neural networks that are used in other fields.

RESULTS

This study proposes a convolutional neural network without fully connected layers, which is an important network improvement in computer vision. The proposed network is more complex in comparison with current signal peptide predictors. The experimental results show that the proposed network outperforms current signal peptide predictors on eukaryotic data. This study also demonstrates how model reduction and data augmentation helps the proposed network to predict bacterial data.

CONCLUSIONS

The study makes three contributions to this subject: (a) an accurate signal peptide recognizer is developed, (b) the potential to leverage advanced networks from other fields is demonstrated and (c) important modifications are proposed while adopting complex networks on signal peptide recognition.

摘要

背景

信号肽在蛋白质分拣中起着重要作用,蛋白质分拣是将蛋白质运输到其目的地的机制。信号肽的识别是确定蛋白质活性位置和功能的重要第一步。已经提出了许多计算方法来促进信号肽识别。近年来,深度学习方法在许多研究领域取得了重大进展。然而,大多数现有的信号肽识别模型使用单隐藏层神经网络或隐马尔可夫模型,与其他领域使用的深度神经网络相比,这些模型相对简单。

结果

本研究提出了一种没有全连接层的卷积神经网络,这是计算机视觉中的一个重要网络改进。与当前的信号肽预测器相比,所提出的网络更加复杂。实验结果表明,所提出的网络在真核数据上优于当前的信号肽预测器。本研究还展示了模型简化和数据增强如何帮助所提出的网络预测细菌数据。

结论

本研究在该领域做出了三项贡献:(a)开发了一种准确的信号肽识别器,(b)展示了利用其他领域先进网络的潜力,(c)在信号肽识别中采用复杂网络时提出了重要的改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6be6/6923836/f8274a798490/12859_2019_3245_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验