Suppr超能文献

基于深度卷积神经网络的比色传感器阵列图像语义识别与分割算法。

Image Semantic Recognition and Segmentation Algorithm of Colorimetric Sensor Array Based on Deep Convolutional Neural Network.

机构信息

College of Computer and Information, Hohai University, Nanjing 211100, Jiangsu, China.

Business School, Hohai University, Nanjing 211100, Jiangsu, China.

出版信息

Comput Intell Neurosci. 2022 Sep 30;2022:2439371. doi: 10.1155/2022/2439371. eCollection 2022.

Abstract

Semantic feature recognition in colour images is required for identifying uneven patterns in object detection and classification. The semantic features are identified by segmenting the colorimetric sensor array features through machine learning paradigms. Semantic segmentation is a method for identifying distinct elements in an image. This can be considered a task involving image classification at the pixel level. This article introduces a semantic feature-dependent array segmentation method (SFASM) to improve recognition accuracy due to irregular semantics. The proposed method incorporates a deep convolutional neural network for detecting the semantic and un-semantic features based on sensor array representations. The colour distributions per array are identified for horizontal and vertical semantics analysis. In this analysis, deep learning classifies the uneven patterns based on colour distribution, i.e. the consecutive and scattered colour distribution pixels in an array are correlated for their similarity. This similarity identification is maximized through max-pooling and recurrent iterations, preventing detection errors. The proposed method classifies the semantic features for further correlation sections, improving the accuracy. The proposed method's performance is thus validated using the metrics precision, analysis time and 1-Score.

摘要

在色彩图像中进行语义特征识别,是为了在目标检测和分类中识别物体的不均匀模式。通过机器学习范式,可以对色度传感器阵列特征进行分割,从而识别语义特征。语义分割是一种在图像中识别不同元素的方法。这可以被认为是一项在像素级别进行图像分类的任务。本文提出了一种基于语义特征的阵列分割方法(SFASM),以提高由于不规则语义而导致的识别准确性。所提出的方法结合了一个深度卷积神经网络,用于根据传感器阵列表示检测语义和非语义特征。为了进行水平和垂直语义分析,确定每个阵列的颜色分布。在这种分析中,深度学习根据颜色分布对不均匀模式进行分类,即对一个阵列中连续和分散的颜色分布像素进行相似性相关。通过最大池化和递归迭代来最大化这种相似性识别,以防止检测错误。该方法对语义特征进行分类,以进一步进行相关部分的分类,从而提高准确性。使用精度、分析时间和 1-Score 等指标对所提出的方法进行了验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/797d/9546663/46a394b22149/CIN2022-2439371.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验