Université de Paris, CNRS, Institut Jacques Monod, 15 rue Hélène Brion, 75013 Paris, France.
Semin Cell Dev Biol. 2020 Jun;102:65-72. doi: 10.1016/j.semcdb.2019.10.018. Epub 2019 Dec 18.
One of the best known features of actin filaments is their helical structure. A number of essential properties emerge from this molecular arrangement of actin subunits. Here, we give an overview of the mechanical and biochemical implications of filament helicity, at different scales. In particular, a number of recent studies have highlighted the role of filament helicity in the adaptation to and the generation of mechanical torsion, and in the modulation of the filament's interaction with very different actin-binding proteins (such as myosins, cross-linkers, formins, and cofilin). Helicity can thus be seen as a key factor for the regulation of actin assembly, and as a link between biochemical regulators and their mechanical context. In addition, actin filament helicity appears to play an essential role in the establishment of chirality at larger scales, up to the organismal scale. Altogether, helicity appears to be an essential feature contributing to the regulation of actin assembly dynamics, and to actin's ability to organize cells at a larger scale.
肌动蛋白丝最著名的特征之一是其螺旋结构。肌动蛋白亚基的这种分子排列产生了许多基本特性。在这里,我们在不同的尺度上概述了丝状体螺旋对力学和生化的影响。特别是,最近的一些研究强调了丝状体螺旋在适应和产生机械扭转以及调节丝状体与非常不同的肌动蛋白结合蛋白(如肌球蛋白、交联蛋白、形成蛋白和丝切蛋白)相互作用中的作用。因此,螺旋可以被视为调节肌动蛋白组装的关键因素,也是生化调节剂与其机械环境之间的联系。此外,肌动蛋白丝的螺旋度似乎在更大尺度上(直至生物体尺度)建立手性方面起着至关重要的作用。总之,螺旋度似乎是调节肌动蛋白组装动力学和肌动蛋白在更大尺度上组织细胞的重要特征。