Suppr超能文献

用于去免疫化和治疗功能的机器引导双目标蛋白质工程

Machine-guided dual-objective protein engineering for deimmunization and therapeutic functions.

作者信息

Wolfsberg Eric, Paul Jean-Sebastien, Tycko Josh, Chen Binbin, Bassik Michael C, Bintu Lacramioara, Alizadeh Ash A, Gao Xiaojing J

机构信息

Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.

Department of Biology, California Institute of Technology, Pasadena, CA 91125, USA; Department of Computer Science, California Institute of Technology, Pasadena, CA 91125, USA.

出版信息

Cell Syst. 2025 Jul 16;16(7):101299. doi: 10.1016/j.cels.2025.101299. Epub 2025 Jun 3.

Abstract

Cell and gene therapies often express nonhuman proteins, which carry a risk of anti-therapy immunogenicity. An emerging consensus is to instead use modified human protein domains, but these domains include nonhuman peptides around mutated residues and at interdomain junctions, which may also be immunogenic. We present a modular workflow to optimize protein function and minimize immunogenicity by using existing machine learning models that predict protein function and peptide-major histocompatibility complex (MHC) presentation. We first applied this workflow to existing transcriptional activation and RNA-binding domains by removing potentially immunogenic MHC II epitopes. We then generated small-molecule-controllable transcription factors with human-derived DNA-binding domains targeting non-genomic DNA sequences. Finally, we established a workflow for creating deimmunized zinc-finger arrays to target arbitrary DNA sequences and upregulated two therapeutically relevant genes, utrophin (UTRN) and sodium voltage-gated channel alpha subunit 1 (SCN1A), using it. Our modular workflow offers a way to potentially make cell and gene therapies safer and more efficacious using state-of-the-art algorithms.

摘要

细胞和基因疗法通常会表达非人类蛋白质,这存在抗治疗免疫原性的风险。一种新出现的共识是转而使用经过修饰的人类蛋白质结构域,但这些结构域在突变残基周围和结构域间连接处以非人类肽段为特征,这也可能具有免疫原性。我们提出了一种模块化工作流程,通过使用预测蛋白质功能和肽 - 主要组织相容性复合体(MHC)呈递的现有机器学习模型,来优化蛋白质功能并将免疫原性降至最低。我们首先通过去除潜在的免疫原性MHC II表位,将此工作流程应用于现有的转录激活和RNA结合结构域。然后,我们生成了具有靶向非基因组DNA序列的人类源DNA结合结构域的小分子可控转录因子。最后,我们建立了一个用于创建去免疫锌指阵列以靶向任意DNA序列的工作流程,并使用该流程上调了两个与治疗相关的基因,即肌营养蛋白(UTRN)和钠电压门控通道α亚基1(SCN1A)。我们的模块化工作流程提供了一种利用先进算法使细胞和基因疗法可能更安全、更有效的方法。

相似文献

9
Systemic treatments for metastatic cutaneous melanoma.转移性皮肤黑色素瘤的全身治疗
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.

本文引用的文献

2
Post-transcriptional modular synthetic receptors.转录后模块化合成受体
Nat Chem Biol. 2025 Mar 28. doi: 10.1038/s41589-025-01872-w.
4
Bilingual language model for protein sequence and structure.用于蛋白质序列和结构的双语语言模型。
NAR Genom Bioinform. 2024 Nov 15;6(4):lqae150. doi: 10.1093/nargab/lqae150. eCollection 2024 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验