Metcalf Kevin James, Wo Galen, Zaragoza Jan Paulo, Raoufi Fahimeh, Baker Jeanne, Chen Daoyang, Derebe Mehabaw, Hogan Jason, Hsu Amy, Kofman Esther, Leigh David, Li Mandy, Malashock Dan, Mann Cate, Motlagh Soha, Park Jihea, Sathiyamoorthy Karthik, Shidhore Madhura, Tang Yinyan, Teng Kevin, Williams Katharine, Waight Andrew, Yilmaz Sultan, Zhang Fan, Zhong Huimin, Fayadat-Dilman Laurence, Bailly Marc
Discovery Biologics, Merck & Co. Inc, Rahway, NJ, USA.
IT, Merck & Co. Inc, Rahway, NJ, USA.
MAbs. 2025 Dec;17(1):2502127. doi: 10.1080/19420862.2025.2502127. Epub 2025 May 10.
Identification of an optimal single protein sequence at the discovery stage for preclinical and clinical development is critical to the rapid development and overall success of a biologic drug. High throughput developability assessments at the discovery stage are used to rank potent molecules by their biophysical properties, deprioritize suboptimal molecules, or trigger additional rounds of protein engineering. Due to the amount of data acquired for these molecules, manual analysis methods to rank molecules are error prone and time-consuming. Here, we present applications of hierarchical clustering analysis for data-driven lead selection of biologics and preformulation screening using high throughput developability data. Hierarchical clustering analysis was applied here for prioritization of three different antibody modalities, including format and chain pairing of bispecific antibodies, sequence-optimized monoclonal antibodies from affinity maturation, preformulation screening of bispecific scFv-Fab fusion molecules, and monoclonal antibodies from an immunization campaign. This high-throughput method for ranking molecules by their developability characteristics and preformulation properties can substantially simplify, streamline, and accelerate biologics discovery and early development.
在临床前和临床开发的发现阶段识别最佳单蛋白序列对于生物药物的快速开发和整体成功至关重要。发现阶段的高通量可开发性评估用于根据其生物物理特性对强效分子进行排名,将次优分子降优先级,或触发额外轮次的蛋白质工程。由于为这些分子获取的数据量庞大,手动分析分子排名的方法容易出错且耗时。在此,我们展示了层次聚类分析在基于高通量可开发性数据进行生物制品数据驱动的先导物选择和制剂前筛选中的应用。层次聚类分析在此用于对三种不同抗体形式进行优先级排序,包括双特异性抗体的形式和链配对、亲和力成熟后的序列优化单克隆抗体、双特异性scFv-Fab融合分子的制剂前筛选以及免疫接种活动产生的单克隆抗体。这种根据分子的可开发性特征和制剂前特性对分子进行排名的高通量方法可以大幅简化、 streamline和加速生物制品的发现和早期开发。 (注:原文中“streamline”未准确翻译,暂保留英文,推测可能是“简化流程”之类的意思)