Suppr超能文献

术中应用受激拉曼散射显微镜评估颅底肿瘤。

Intraoperative assessment of skull base tumors using stimulated Raman scattering microscopy.

机构信息

Department of Chemistry, University of Washington, Seattle, 98125-1700, USA.

School of Medicine, University of Washington, Seattle, 98125-1700, USA.

出版信息

Sci Rep. 2019 Dec 31;9(1):20392. doi: 10.1038/s41598-019-56932-8.

Abstract

Intraoperative consultations, used to guide tumor resection, can present histopathological findings that are challenging to interpret due to artefacts from tissue cryosectioning and conventional staining. Stimulated Raman histology (SRH), a label-free imaging technique for unprocessed biospecimens, has demonstrated promise in a limited subset of tumors. Here, we target unexplored skull base tumors using a fast simultaneous two-channel stimulated Raman scattering (SRS) imaging technique and a new pseudo-hematoxylin and eosin (H&E) recoloring methodology. To quantitatively evaluate the efficacy of our approach, we use modularized assessment of diagnostic accuracy beyond cancer/non-cancer determination and neuropathologist confidence for SRH images contrasted to H&E-stained frozen and formalin-fixed paraffin-embedded (FFPE) tissue sections. Our results reveal that SRH is effective for establishing a diagnosis using fresh tissue in most cases with 87% accuracy relative to H&E-stained FFPE sections. Further analysis of discrepant case interpretation suggests that pseudo-H&E recoloring underutilizes the rich chemical information offered by SRS imaging, and an improved diagnosis can be achieved if full SRS information is used. In summary, our findings show that pseudo-H&E recolored SRS images in combination with lipid and protein chemical information can maximize the use of SRS during intraoperative pathologic consultation with implications for tissue preservation and augmented diagnostic utility.

摘要

术中会诊用于指导肿瘤切除,由于组织冷冻切片和常规染色的人为因素,可能会呈现出难以解释的组织病理学发现。刺激拉曼组织学(SRH)是一种用于未经处理的生物标本的无标记成像技术,在有限的肿瘤亚组中显示出了潜力。在这里,我们使用快速的双通道同时激发拉曼散射(SRS)成像技术和一种新的伪苏木精和伊红(H&E)重染色方法,针对未探索的颅底肿瘤。为了定量评估我们方法的有效性,我们使用癌症/非癌症判断和神经病理学家对 SRS 图像相对于 H&E 染色的冷冻和福尔马林固定石蜡包埋(FFPE)组织切片的信心的模块化评估来评估诊断准确性。我们的结果表明,SRH 对于使用新鲜组织建立诊断是有效的,在大多数情况下,相对于 H&E 染色的 FFPE 切片,其准确率为 87%。对不一致的病例解释的进一步分析表明,伪 H&E 重染色未能充分利用 SRS 成像提供的丰富化学信息,如果充分利用 SRS 信息,则可以实现更好的诊断。总之,我们的发现表明,伪 H&E 重染色的 SRS 图像结合脂质和蛋白质化学信息可以在术中病理咨询过程中最大限度地利用 SRS,这对组织保存和增强诊断具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2935/6938502/07acf9ed14c9/41598_2019_56932_Fig1_HTML.jpg

相似文献

1
Intraoperative assessment of skull base tumors using stimulated Raman scattering microscopy.
Sci Rep. 2019 Dec 31;9(1):20392. doi: 10.1038/s41598-019-56932-8.
2
Neuropathological interpretation of stimulated Raman histology images of brain and spine tumors: part B.
Neurosurg Rev. 2022 Apr;45(2):1721-1729. doi: 10.1007/s10143-021-01711-1. Epub 2021 Dec 10.
3
Stimulated Raman Histology for Rapid Intra-Operative Diagnosis of Sinonasal and Skull Base Tumors.
Laryngoscope. 2022 Nov;132(11):2142-2147. doi: 10.1002/lary.30233. Epub 2022 May 30.
4
Clinical Validation of Stimulated Raman Histology for Rapid Intraoperative Diagnosis of Central Nervous System Tumors.
Mod Pathol. 2023 Sep;36(9):100219. doi: 10.1016/j.modpat.2023.100219. Epub 2023 May 17.
6
Interactive presurgical simulation applying advanced 3D imaging and modeling techniques for skull base and deep tumors.
J Neurosurg. 2013 Jul;119(1):94-105. doi: 10.3171/2013.3.JNS121109. Epub 2013 Apr 12.
7
Rapid Automated Analysis of Skull Base Tumor Specimens Using Intraoperative Optical Imaging and Artificial Intelligence.
Neurosurgery. 2022 Jun 1;90(6):758-767. doi: 10.1227/neu.0000000000001929. Epub 2022 Mar 30.
8
Virtual formalin-fixed and paraffin-embedded staining of fresh brain tissue via stimulated Raman CycleGAN model.
Sci Adv. 2024 Mar 29;10(13):eadn3426. doi: 10.1126/sciadv.adn3426. Epub 2024 Mar 27.
9
Rapid Intraoperative Diagnosis of Meningiomas using Stimulated Raman Histology.
World Neurosurg. 2021 Jun;150:e108-e116. doi: 10.1016/j.wneu.2021.02.097. Epub 2021 Feb 27.
10
Rapid histology of laryngeal squamous cell carcinoma with deep-learning based stimulated Raman scattering microscopy.
Theranostics. 2019 Apr 13;9(9):2541-2554. doi: 10.7150/thno.32655. eCollection 2019.

引用本文的文献

1
Artificial Intelligence-Assisted Stimulated Raman Histology: New Frontiers in Vibrational Tissue Imaging.
Cancers (Basel). 2024 Nov 22;16(23):3917. doi: 10.3390/cancers16233917.
2
Recent Advances in Enhancement of Raman Scattering Intensity for Biological Applications.
Chem Biomed Imaging. 2023 Apr 22;1(7):575-589. doi: 10.1021/cbmi.3c00017. eCollection 2023 Oct 23.
3
Seeing is Believing: Developing Multimodal Metabolic Insights at the Molecular Level.
ACS Cent Sci. 2024 Mar 21;10(4):758-774. doi: 10.1021/acscentsci.3c01438. eCollection 2024 Apr 24.
4
Label-free optical imaging for brain cancer assessment.
Trends Cancer. 2024 Jun;10(6):557-570. doi: 10.1016/j.trecan.2024.03.005. Epub 2024 Apr 4.
5
Virtual formalin-fixed and paraffin-embedded staining of fresh brain tissue via stimulated Raman CycleGAN model.
Sci Adv. 2024 Mar 29;10(13):eadn3426. doi: 10.1126/sciadv.adn3426. Epub 2024 Mar 27.
6
Virtual Staining of Nonfixed Tissue Histology.
Mod Pathol. 2024 May;37(5):100444. doi: 10.1016/j.modpat.2024.100444. Epub 2024 Feb 6.
7
Meningiomas with CNS invasion.
Front Neurosci. 2023 Jun 29;17:1189606. doi: 10.3389/fnins.2023.1189606. eCollection 2023.
8
From Research to Diagnostic Application of Raman Spectroscopy in Neurosciences: Past and Perspectives.
Free Neuropathol. 2022 Aug 5;3:19. doi: 10.17879/freeneuropathology-2022-4210. eCollection 2022 Jan.
9
Rapid digital pathology of H&E-stained fresh human brain specimens as an alternative to frozen biopsy.
Commun Med (Lond). 2023 May 30;3(1):77. doi: 10.1038/s43856-023-00305-w.
10
Surgical margin assessment of bone tumours: A systematic review of current and emerging technologies.
J Bone Oncol. 2023 Feb 9;39:100469. doi: 10.1016/j.jbo.2023.100469. eCollection 2023 Apr.

本文引用的文献

1
Stimulated Raman histology: one to one comparison with standard hematoxylin and eosin staining.
Biomed Opt Express. 2019 Sep 30;10(10):5378-5384. doi: 10.1364/BOE.10.005378. eCollection 2019 Oct 1.
2
Comparison of nonlinear microscopy and frozen section histology for imaging of Mohs surgical margins.
Biomed Opt Express. 2019 Jul 30;10(8):4249-4260. doi: 10.1364/BOE.10.004249. eCollection 2019 Aug 1.
3
Evaluation of Deep Learning Strategies for Nucleus Segmentation in Fluorescence Images.
Cytometry A. 2019 Sep;95(9):952-965. doi: 10.1002/cyto.a.23863. Epub 2019 Jul 16.
4
Rapid histology of laryngeal squamous cell carcinoma with deep-learning based stimulated Raman scattering microscopy.
Theranostics. 2019 Apr 13;9(9):2541-2554. doi: 10.7150/thno.32655. eCollection 2019.
5
Broadband hyperspectral stimulated Raman scattering microscopy with a parabolic fiber amplifier source.
Biomed Opt Express. 2018 Nov 8;9(12):6116-6131. doi: 10.1364/BOE.9.006116. eCollection 2018 Dec 1.
6
Multi-tissue and multi-scale approach for nuclei segmentation in H&E stained images.
Biomed Eng Online. 2018 Jun 20;17(1):89. doi: 10.1186/s12938-018-0518-0.
7
Rapid virtual hematoxylin and eosin histology of breast tissue specimens using a compact fluorescence nonlinear microscope.
Lab Invest. 2018 Jan;98(1):150-160. doi: 10.1038/labinvest.2017.116. Epub 2017 Nov 13.
8
Histological coherent Raman imaging: a prognostic review.
Analyst. 2017 Dec 18;143(1):33-59. doi: 10.1039/c7an01266g.
9
Rapid Intraoperative Diagnosis of Pediatric Brain Tumors Using Stimulated Raman Histology.
Cancer Res. 2018 Jan 1;78(1):278-289. doi: 10.1158/0008-5472.CAN-17-1974. Epub 2017 Nov 1.
10
TAMeless traitors: macrophages in cancer progression and metastasis.
Br J Cancer. 2017 Nov 21;117(11):1583-1591. doi: 10.1038/bjc.2017.356. Epub 2017 Oct 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验