Suppr超能文献

术中光学成像和人工智能快速分析颅底肿瘤标本

Rapid Automated Analysis of Skull Base Tumor Specimens Using Intraoperative Optical Imaging and Artificial Intelligence.

机构信息

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA.

School of Medicine, University of Michigan, Ann Arbor, Michigan, USA.

出版信息

Neurosurgery. 2022 Jun 1;90(6):758-767. doi: 10.1227/neu.0000000000001929. Epub 2022 Mar 30.

Abstract

BACKGROUND

Accurate specimen analysis of skull base tumors is essential for providing personalized surgical treatment strategies. Intraoperative specimen interpretation can be challenging because of the wide range of skull base pathologies and lack of intraoperative pathology resources.

OBJECTIVE

To develop an independent and parallel intraoperative workflow that can provide rapid and accurate skull base tumor specimen analysis using label-free optical imaging and artificial intelligence.

METHODS

We used a fiber laser-based, label-free, nonconsumptive, high-resolution microscopy method (<60 seconds per 1 × 1 mm2), called stimulated Raman histology (SRH), to image a consecutive, multicenter cohort of patients with skull base tumor. SRH images were then used to train a convolutional neural network model using 3 representation learning strategies: cross-entropy, self-supervised contrastive learning, and supervised contrastive learning. Our trained convolutional neural network models were tested on a held-out, multicenter SRH data set.

RESULTS

SRH was able to image the diagnostic features of both benign and malignant skull base tumors. Of the 3 representation learning strategies, supervised contrastive learning most effectively learned the distinctive and diagnostic SRH image features for each of the skull base tumor types. In our multicenter testing set, cross-entropy achieved an overall diagnostic accuracy of 91.5%, self-supervised contrastive learning 83.9%, and supervised contrastive learning 96.6%. Our trained model was able to segment tumor-normal margins and detect regions of microscopic tumor infiltration in meningioma SRH images.

CONCLUSION

SRH with trained artificial intelligence models can provide rapid and accurate intraoperative analysis of skull base tumor specimens to inform surgical decision-making.

摘要

背景

准确分析颅底肿瘤标本对于提供个性化手术治疗策略至关重要。由于颅底病变范围广泛且术中缺乏病理学资源,术中标本解读具有一定挑战性。

目的

开发一种独立且并行的术中工作流程,利用无标记光学生物成像和人工智能技术,快速准确地分析颅底肿瘤标本。

方法

我们使用基于光纤激光的无标记、非消耗性、高分辨率显微镜方法(<60 秒/1×1mm2),即受激拉曼组织学(SRH),对颅底肿瘤的连续多中心患者队列进行成像。然后,使用 3 种表示学习策略(交叉熵、自监督对比学习和监督对比学习)来训练卷积神经网络模型。我们的训练有素的卷积神经网络模型在独立的多中心 SRH 数据集上进行了测试。

结果

SRH 能够对良性和恶性颅底肿瘤的诊断特征进行成像。在 3 种表示学习策略中,监督对比学习最有效地学习了每种颅底肿瘤类型的独特和诊断性 SRH 图像特征。在我们的多中心测试集中,交叉熵的总体诊断准确率为 91.5%,自监督对比学习为 83.9%,监督对比学习为 96.6%。我们的训练模型能够分割肿瘤-正常边界并检测脑膜瘤 SRH 图像中的微观肿瘤浸润区域。

结论

经过人工智能模型训练的 SRH 可提供快速、准确的颅底肿瘤标本术中分析,为手术决策提供信息。

相似文献

6
Label-free brain tumor imaging using Raman-based methods.基于拉曼光谱的无标记脑肿瘤成像。
J Neurooncol. 2021 Feb;151(3):393-402. doi: 10.1007/s11060-019-03380-z. Epub 2021 Feb 21.
7
Rapid Intraoperative Diagnosis of Meningiomas using Stimulated Raman Histology.使用受激拉曼组织学快速术中诊断脑膜瘤。
World Neurosurg. 2021 Jun;150:e108-e116. doi: 10.1016/j.wneu.2021.02.097. Epub 2021 Feb 27.
10
[Intraoperative stimulated Raman histology for personalized brain tumor surgery].[术中受激拉曼组织学用于个性化脑肿瘤手术]
Chirurgie (Heidelb). 2024 Apr;95(4):274-279. doi: 10.1007/s00104-024-02038-5. Epub 2024 Feb 9.

引用本文的文献

1
Artificial Intelligence Assurance in Head and Neck Surgery: Now and Next.头颈外科中的人工智能保障:现状与未来。
Proc IEEE Int Symp Comput Based Med Syst. 2025 Jun;2025:977-982. doi: 10.1109/cbms65348.2025.00195. Epub 2025 Jul 4.
9
Advancements in Skull Base Surgery: Navigating Complex Challenges with Artificial Intelligence.颅底外科的进展:借助人工智能应对复杂挑战。
Indian J Otolaryngol Head Neck Surg. 2024 Apr;76(2):2184-2190. doi: 10.1007/s12070-023-04415-8. Epub 2023 Dec 20.
10
[Intraoperative stimulated Raman histology for personalized brain tumor surgery].[术中受激拉曼组织学用于个性化脑肿瘤手术]
Chirurgie (Heidelb). 2024 Apr;95(4):274-279. doi: 10.1007/s00104-024-02038-5. Epub 2024 Feb 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验