Department of Chemical and Biomolecular Engineering , Vanderbilt University , Nashville , Tennessee 37235 , United States.
Center for Bone Biology , Vanderbilt University Medical Center , Nashville , Tennessee 37232 , United States.
ACS Nano. 2020 Jan 28;14(1):311-327. doi: 10.1021/acsnano.9b04571. Epub 2020 Jan 8.
Breast cancer patients are at high risk for bone metastasis. Metastatic bone disease is a major clinical problem that leads to a reduction in mobility, increased risk of pathologic fracture, severe bone pain, and other skeletal-related events. The transcription factor Gli2 drives expression of parathyroid hormone-related protein (PTHrP), which activates osteoclast-mediated bone destruction, and previous studies showed that Gli2 genetic repression in bone-metastatic tumor cells significantly reduces tumor-induced bone destruction. Small molecule inhibitors of Gli2 have been identified; however, the lipophilicity and poor pharmacokinetic profile of these compounds have precluded their success . In this study, we designed a bone-targeted nanoparticle (BTNP) comprising an amphiphilic diblock copolymer of poly[(propylene sulfide)--(alendronate acrylamide--,-dimethylacrylamide)] [PPS--P(Aln--DMA)] to encapsulate and preferentially deliver a small molecule Gli2 inhibitor, GANT58, to bone-associated tumors. The mol % of the bisphosphonate Aln in the hydrophilic polymer block was varied in order to optimize BTNP targeting to tumor-associated bone by a combination of nonspecific tumor accumulation (presumably through the enhanced permeation and retention effect) and active bone binding. Although 100% functionalization with Aln created BTNPs with strong bone binding, these BTNPs had highly negative zeta-potential, resulting in shorter circulation time, greater liver uptake, and less distribution to metastatic tumors in bone. However, 10 mol % of Aln in the hydrophilic block generated a formulation with a favorable balance of systemic pharmacokinetics and bone binding, providing the highest bone/liver biodistribution ratio among formulations tested. In an intracardiac tumor cell injection model of breast cancer bone metastasis, treatment with the lead candidate GANT58-BTNP formulation decreased tumor-associated bone lesion area 3-fold and increased bone volume fraction in the tibiae of the mice 2.5-fold. Aln conferred bone targeting to the GANT58-BTNPs, which increased GANT58 concentration in the tumor-associated bone relative to untargeted NPs, and also provided benefit through the direct antiresorptive therapeutic function of Aln. The dual benefit of the Aln in the BTNPs was supported by the observations that drug-free Aln-containing BTNPs improved bone volume fraction in bone-tumor-bearing mice, while GANT58-BTNPs created better therapeutic outcomes than both unloaded BTNPs and GANT58-loaded untargeted NPs. These findings suggest GANT58-BTNPs have potential to potently inhibit tumor-driven osteoclast activation and resultant bone destruction in patients with bone-associated tumor metastases.
乳腺癌患者存在发生骨转移的高风险。转移性骨疾病是一个主要的临床问题,会导致活动能力下降、病理性骨折风险增加、严重骨痛和其他骨骼相关事件。转录因子 Gli2 驱动甲状旁腺激素相关蛋白(PTHrP)的表达,后者激活破骨细胞介导的骨破坏,先前的研究表明,骨转移肿瘤细胞中 Gli2 的遗传抑制可显著减少肿瘤诱导的骨破坏。已经鉴定出Gli2 的小分子抑制剂;然而,这些化合物的亲脂性和较差的药代动力学特性阻碍了它们的成功。在这项研究中,我们设计了一种包含聚[(丙烯基硫化物)-(阿伦膦酸丙烯酰胺-,-二甲基丙烯酰胺)] [PPS-P(Aln-DMA)]的两亲性嵌段共聚物的骨靶向纳米颗粒(BTNP),以封装并优先递送至与骨相关的肿瘤的小分子 Gli2 抑制剂 GANT58。亲水聚合物嵌段中双膦酸盐 Aln 的摩尔%进行了变化,以便通过非特异性肿瘤积累(推测通过增强渗透和保留效应)和主动骨结合来优化 BTNP 对与肿瘤相关的骨的靶向性。尽管 100%功能化的 Aln 生成了与骨结合能力强的 BTNPs,但这些 BTNPs 的 ζ 电位非常负,导致循环时间缩短、肝脏摄取增加,以及向骨转移瘤的分布减少。然而,亲水嵌段中 10mol%的 Aln 生成了一种具有良好的系统药代动力学和骨结合平衡的制剂,在测试的制剂中提供了最高的骨/肝生物分布比。在乳腺癌骨转移的心脏内肿瘤细胞注射模型中,用候选药物 GANT58-BTNP 制剂治疗可使与肿瘤相关的骨病变面积减少 3 倍,并使小鼠胫骨中的骨体积分数增加 2.5 倍。Aln 赋予 GANT58-BTNPs 以骨靶向性,与非靶向 NPs 相比,GANT58-BTNPs 使肿瘤相关骨中的 GANT58 浓度增加,并且 Aln 的直接抗吸收治疗功能也提供了益处。BTNPs 中的 Aln 的双重益处得到了以下观察结果的支持:无药物的含 Aln 的 BTNPs 改善了骨肿瘤荷瘤小鼠的骨体积分数,而 GANT58-BTNPs 比未负载的 BTNPs 和负载 GANT58 的非靶向 NPs 产生了更好的治疗效果。这些发现表明,GANT58-BTNPs 具有潜力在与骨相关的肿瘤转移患者中强力抑制肿瘤驱动的破骨细胞激活和由此产生的骨破坏。