Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH, 43210, USA.
Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave, Ann Arbor, MI, 48109, USA.
ISME J. 2020 Apr;14(4):881-895. doi: 10.1038/s41396-019-0580-z. Epub 2020 Jan 2.
Ocean viruses are abundant and infect 20-40% of surface microbes. Infected cells, termed virocells, are thus a predominant microbial state. Yet, virocells and their ecosystem impacts are understudied, thus precluding their incorporation into ecosystem models. Here we investigated how unrelated bacterial viruses (phages) reprogram one host into contrasting virocells with different potential ecosystem footprints. We independently infected the marine Pseudoalteromonas bacterium with siphovirus PSA-HS2 and podovirus PSA-HP1. Time-resolved multi-omics unveiled drastically different metabolic reprogramming and resource requirements by each virocell, which were related to phage-host genomic complementarity and viral fitness. Namely, HS2 was more complementary to the host in nucleotides and amino acids, and fitter during infection than HP1. Functionally, HS2 virocells hardly differed from uninfected cells, with minimal host metabolism impacts. HS2 virocells repressed energy-consuming metabolisms, including motility and translation. Contrastingly, HP1 virocells substantially differed from uninfected cells. They repressed host transcription, responded to infection continuously, and drastically reprogrammed resource acquisition, central carbon and energy metabolisms. Ecologically, this work suggests that one cell, infected versus uninfected, can have immensely different metabolisms that affect the ecosystem differently. Finally, we relate phage-host genome complementarity, virocell metabolic reprogramming, and viral fitness in a conceptual model to guide incorporating viruses into ecosystem models.
海洋病毒数量丰富,感染了 20-40%的表层微生物。因此,受感染的细胞,称为病毒细胞,是一种主要的微生物状态。然而,病毒细胞及其对生态系统的影响还没有得到充分的研究,因此无法将其纳入生态系统模型。在这里,我们研究了不相关的细菌病毒(噬菌体)如何将一个宿主重新编程为具有不同潜在生态系统足迹的截然不同的病毒细胞。我们分别用噬菌体型 PSA-HS2 和尾噬菌体 PSA-HP1 独立感染海洋假交替单胞菌。时间分辨的多组学揭示了每个病毒细胞截然不同的代谢重编程和资源需求,这与噬菌体-宿主基因组互补性和病毒适应性有关。也就是说,HS2 在核苷酸和氨基酸方面与宿主的互补性更强,在感染过程中比 HP1 更具适应性。从功能上讲,HS2 病毒细胞与未感染的细胞几乎没有区别,对宿主代谢的影响最小。HS2 病毒细胞抑制了耗能代谢,包括运动和翻译。相比之下,HP1 病毒细胞与未感染的细胞有很大的不同。它们抑制宿主转录,持续对感染作出反应,并极大地重新编程资源获取、中心碳和能量代谢。从生态角度来看,这项工作表明,一个细胞,感染与否,可能具有截然不同的代谢方式,从而对生态系统产生不同的影响。最后,我们在一个概念模型中,将噬菌体-宿主基因组互补性、病毒细胞代谢重编程和病毒适应性联系起来,以指导将病毒纳入生态系统模型。