Suppr超能文献

一种采用L1-魔术恢复技术的新型加权压缩感知在医学图像压缩中的应用。

A novel weighted compressive sensing using L1-magic recovery technique in medical image compression.

作者信息

Alaa Eman Elsaid, Ashour Amira S, Guo Yanhui, Kasem Hossam M

机构信息

1Department of Electronics and Electrical Communications Engineering, Faculty of Engineering, Tanta University, Tanta, Egypt.

2Department of Computer Science, University of Illinois, Springfield, IL USA.

出版信息

Health Inf Sci Syst. 2019 Dec 23;8(1):2. doi: 10.1007/s13755-019-0093-1. eCollection 2020 Dec.

Abstract

Recent technological advancement in computing technology, communication systems, and machine learning techniques provides opportunities to biomedical engineers to achieve the requirements of clinical practice. This requires storage and/or transmission of medical images with the conservation of the medical information over the communication channel. Accordingly, medical compression is necessary for efficient channel bandwidth utilization. To solve the trade-off between the compression ratio and the preservation of significant information, compressed sensing (CS) can be used. During image recovery in CS, an optimization algorithm is used, such as greedy pursuit, convex relaxation, and Bayesian framework. In the present work, a convex relaxation optimization called L1-magic is employed, where the objective function can be relaxed to the nearest convex norm, i.e., ℓ1-norm. In addition, the discrete cosine transform is used for recovery by transforming the image from time- to frequency-domain. To improve the medical image recovery, a weighted L1-magic is proposed using a threshold based on the image content, where high weight is given to the significant details in the image. Thus, the significant information in the image (values greater than the threshold) is multiplied by a weight factor according to the image characteristics for a successful recovery process. A comparative study of the proposed weighted L1-magic and orthogonal matching pursuit (OMP), one of the greedy algorithms, was conducted. Different metrics were measured, including the Structural Similarity Index Measure and Peak Signal-to-Noise Ratio (PSNR) to evaluate CS performance using the proposed weighted L1-magic as well as the weighted OMP and the principal component analysis (PCA) as a traditional compression method at different compression ratios (CR). The experimental results on diabetic retinopathy images dataset proved the superiority of the weighted L1-magic method, where for example as 0.4 CR, average PSNR is 19.37, 17.95, and 15.64 using the weighted L1-magic, weighted OMP, and PCA, respectively.

摘要

计算技术、通信系统和机器学习技术方面的最新技术进步为生物医学工程师提供了实现临床实践要求的机会。这需要在通信信道上存储和/或传输医学图像,并保留医学信息。因此,医学压缩对于有效利用信道带宽是必要的。为了解决压缩率和重要信息保留之间的权衡问题,可以使用压缩感知(CS)。在CS的图像恢复过程中,会使用一种优化算法,如贪婪追踪、凸松弛和贝叶斯框架。在本工作中,采用了一种称为L1-magic的凸松弛优化方法,其中目标函数可以松弛为最接近的凸范数,即ℓ1范数。此外,离散余弦变换用于通过将图像从时域转换到频域来进行恢复。为了改进医学图像恢复,提出了一种基于图像内容的阈值加权L1-magic方法,其中对图像中的重要细节赋予高权重。因此,图像中的重要信息(大于阈值的值)根据图像特征乘以一个权重因子,以实现成功的恢复过程。对所提出的加权L1-magic和贪婪算法之一的正交匹配追踪(OMP)进行了比较研究。测量了不同的指标,包括结构相似性指数测量和峰值信噪比(PSNR),以在不同压缩率(CR)下评估使用所提出的加权L1-magic以及加权OMP和作为传统压缩方法的主成分分析(PCA)的CS性能。在糖尿病视网膜病变图像数据集上的实验结果证明了加权L1-magic方法的优越性,例如在0.4的CR下,使用加权L1-magic、加权OMP和PCA时的平均PSNR分别为19.37、17.95和15.64。

相似文献

1
A novel weighted compressive sensing using L1-magic recovery technique in medical image compression.
Health Inf Sci Syst. 2019 Dec 23;8(1):2. doi: 10.1007/s13755-019-0093-1. eCollection 2020 Dec.
2
Smoothly clipped absolute deviation (SCAD) regularization for compressed sensing MRI using an augmented Lagrangian scheme.
Magn Reson Imaging. 2013 Oct;31(8):1399-411. doi: 10.1016/j.mri.2013.05.010. Epub 2013 Jul 24.
3
Multi-channel ECG data compression using compressed sensing in eigenspace.
Comput Biol Med. 2016 Jun 1;73:24-37. doi: 10.1016/j.compbiomed.2016.03.021. Epub 2016 Mar 30.
4
Performance evaluation of compressive sensing based lost data recovery using OMP for damage index estimation in ultrasonic SHM.
Ultrasonics. 2021 Aug;115:106439. doi: 10.1016/j.ultras.2021.106439. Epub 2021 Apr 16.
5
Image Denoising Using a Compressive Sensing Approach Based on Regularization Constraints.
Sensors (Basel). 2022 Mar 11;22(6):2199. doi: 10.3390/s22062199.
6
Fast Second Degree Total Variation Method for Image Compressive Sensing.
PLoS One. 2015 Sep 11;10(9):e0137115. doi: 10.1371/journal.pone.0137115. eCollection 2015.
7
Compressed sensing of ECG signal for wireless system with new fast iterative method.
Comput Methods Programs Biomed. 2015 Dec;122(3):437-49. doi: 10.1016/j.cmpb.2015.09.010. Epub 2015 Sep 21.
8
SpiNet: A deep neural network for Schatten p-norm regularized medical image reconstruction.
Med Phys. 2021 May;48(5):2214-2229. doi: 10.1002/mp.14744. Epub 2021 Mar 22.
10
Adaptive Grouping Distributed Compressive Sensing Reconstruction of Plant Hyperspectral Data.
Sensors (Basel). 2017 Jun 7;17(6):1322. doi: 10.3390/s17061322.

引用本文的文献

1
Manta Ray Foraging Optimization with Vector Quantization Based Microarray Image Compression Technique.
Comput Intell Neurosci. 2022 May 25;2022:7140552. doi: 10.1155/2022/7140552. eCollection 2022.

本文引用的文献

1
Computational MRI: Compressive Sensing and Beyond.
IEEE Signal Process Mag. 2020 Jan;37(1):21-23. doi: 10.1109/MSP.2019.2953993. Epub 2020 Jan 17.
2
Erratum to: Usability study of a simplified electroencephalograph as a health-care system.
Health Inf Sci Syst. 2016 Feb 16;4:1. doi: 10.1186/s13755-016-0014-5. eCollection 2016.
3
Big data analytics in healthcare: promise and potential.
Health Inf Sci Syst. 2014 Feb 7;2:3. doi: 10.1186/2047-2501-2-3. eCollection 2014.
4
Bio and health informatics meets cloud : BioVLab as an example.
Health Inf Sci Syst. 2013 Feb 4;1:6. doi: 10.1186/2047-2501-1-6. eCollection 2013.
5
Visually weighted compressive sensing: measurement and reconstruction.
IEEE Trans Image Process. 2013 Apr;22(4):1444-55. doi: 10.1109/TIP.2012.2231688. Epub 2012 Dec 4.
6
Improved pediatric MR imaging with compressed sensing.
Radiology. 2010 Aug;256(2):607-16. doi: 10.1148/radiol.10091218. Epub 2010 Jun 7.
7
Compressed sensing based interior tomography.
Phys Med Biol. 2009 May 7;54(9):2791-805. doi: 10.1088/0031-9155/54/9/014. Epub 2009 Apr 15.
8
Sparse MRI: The application of compressed sensing for rapid MR imaging.
Magn Reson Med. 2007 Dec;58(6):1182-95. doi: 10.1002/mrm.21391.
9
A review of compression methods for medical images in PACS.
Int J Med Inform. 1998 Oct-Dec;52(1-3):159-65. doi: 10.1016/s1386-5056(98)00135-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验