Rodriguez-Morilla Beatriz, Estivill Eduard, Estivill-Domènech Carla, Albares Javier, Segarra Francisco, Correa Angel, Campos Manuel, Rol Maria Angeles, Madrid Juan Antonio
Laboratory of Chronobiology, IMIB-Arrixaca, Department of Physiology, Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, University of Murcia, Murcia, Spain.
Clínica del Sueño Estivill, Barcelona, Spain.
Front Neurosci. 2019 Dec 10;13:1318. doi: 10.3389/fnins.2019.01318. eCollection 2019.
The present study proposes a classification model for the differential diagnosis of primary insomnia (PI) and delayed sleep phase disorder (DSPD), applying machine learning methods to circadian parameters obtained from ambulatory circadian monitoring (ACM). Nineteen healthy controls and 242 patients (PI = 184; DSPD = 58) were selected for a retrospective and non-interventional study from an anonymized Circadian Health Database (https://kronowizard.um.es/). ACM records wrist temperature (T), motor activity (A), body position (P), and environmental light exposure (L) rhythms during a whole week. Sleep was inferred from the integrated variable TAP (from temperature, activity, and position). Non-parametric analyses of TAP and estimated sleep yielded indexes of interdaily stability (IS), intradaily variability (IV), relative amplitude (RA), and a global circadian function index (CFI). Mid-sleep and mid-wake times were estimated from the central time of TAP-L5 (five consecutive hours of lowest values) and TAP-M10 (10 consecutive hours of maximum values), respectively. The most discriminative parameters, determined by ANOVA, Chi-squared, and information gain criteria analysis, were employed to build a decision tree, using machine learning. This model differentiated between healthy controls, DSPD and three insomnia subgroups (compatible with onset, maintenance and mild insomnia), with accuracy, sensitivity, and AUC >85%. In conclusion, circadian parameters can be reliably and objectively used to discriminate and characterize different sleep and circadian disorders, such as DSPD and OI, which are commonly confounded, and between different subtypes of PI. Our findings highlight the importance of considering circadian rhythm assessment in sleep medicine.
本研究提出了一种用于原发性失眠(PI)和睡眠时相延迟障碍(DSPD)鉴别诊断的分类模型,将机器学习方法应用于从动态昼夜节律监测(ACM)获得的昼夜节律参数。从匿名的昼夜节律健康数据库(https://kronowizard.um.es/)中选取了19名健康对照者和242名患者(PI = 184;DSPD = 58)进行回顾性非干预性研究。ACM记录了一整周的手腕温度(T)、运动活动(A)、身体位置(P)和环境光照暴露(L)节律。通过综合变量TAP(来自温度、活动和位置)推断睡眠情况。对TAP和估计睡眠进行非参数分析,得出了日际稳定性(IS)、日内变异性(IV)、相对振幅(RA)和整体昼夜节律功能指数(CFI)等指标。分别根据TAP-L5(连续五个小时的最低值)和TAP-M10(连续十个小时的最高值)的中心时间估计睡眠中期和清醒中期时间。通过方差分析、卡方检验和信息增益标准分析确定的最具鉴别力的参数,被用于使用机器学习构建决策树。该模型能够区分健康对照者、DSPD和三个失眠亚组(与发作性、维持性和轻度失眠相符),准确率、敏感性和曲线下面积(AUC)均>85%。总之,昼夜节律参数可可靠且客观地用于鉴别和表征不同的睡眠和昼夜节律障碍,如常见混淆的DSPD和发作性失眠(OI),以及PI的不同亚型。我们的研究结果突出了在睡眠医学中考虑昼夜节律评估的重要性。