Kusmakar S, Karmakar C, Zhu Y, Shelyag S, Drummond S P A, Ellis J G, Angelova M
School of Information Technology, Deakin University, Geelong, Victoria 3125, Australia.
Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia.
R Soc Open Sci. 2021 Jun 16;8(6):202264. doi: 10.1098/rsos.202264.
We propose a novel machine learning-based method for analysing multi-night actigraphy signals to objectively classify and differentiate nocturnal awakenings in individuals with chronic insomnia (CI) and their cohabiting healthy partners. We analysed nocturnal actigraphy signals from 40 cohabiting couples with one partner seeking treatment for insomnia. We extracted 12 time-domain dynamic and nonlinear features from the actigraphy signals to classify nocturnal awakenings in healthy individuals and those with CI. These features were then used to train two machine learning classifiers, random forest (RF) and support vector machine (SVM). An optimization algorithm that incorporated the predicted quality of each night for each individual was used to classify individuals into CI or healthy sleepers. Using the proposed actigraphic signal analysis technique, coupled with a rigorous leave-one-out validation approach, we achieved a classification accuracy of 80% (sensitivity: 76%, specificity: 82%) in classifying CI individuals and their healthy bed partners. The RF classifier (accuracy: 80%) showed a better performance than SVM (accuracy: 75%). Our approach to analysing the multi-night nocturnal actigraphy recordings provides a new method for screening individuals with CI, using wrist-actigraphy devices, facilitating home monitoring.
我们提出了一种基于机器学习的新方法,用于分析多晚的活动记录仪信号,以客观地对慢性失眠(CI)患者及其同居的健康伴侣的夜间觉醒进行分类和区分。我们分析了40对同居夫妇的夜间活动记录仪信号,其中一方正在寻求失眠治疗。我们从活动记录仪信号中提取了12个时域动态和非线性特征,以对健康个体和CI患者的夜间觉醒进行分类。然后,这些特征被用于训练两种机器学习分类器,即随机森林(RF)和支持向量机(SVM)。一种结合了每个个体每晚预测质量的优化算法被用于将个体分类为CI患者或健康睡眠者。使用所提出的活动记录仪信号分析技术,并结合严格的留一法验证方法,我们在对CI患者及其健康床伴进行分类时,分类准确率达到了80%(敏感性:76%,特异性:82%)。RF分类器(准确率:80%)表现出比SVM(准确率:75%)更好的性能。我们分析多晚夜间活动记录仪记录的方法提供了一种使用腕部活动记录仪设备筛查CI患者的新方法,便于家庭监测。