Suppr超能文献

差异分化的巨噬细胞的荟萃分析确定了可分类疾病巨噬细胞的转录组特征。

Meta-Analysis of -Differentiated Macrophages Identifies Transcriptomic Signatures That Classify Disease Macrophages .

机构信息

Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.

Genome Diagnostics Laboratory, Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.

出版信息

Front Immunol. 2019 Dec 11;10:2887. doi: 10.3389/fimmu.2019.02887. eCollection 2019.

Abstract

Macrophages are heterogeneous leukocytes regulated in a tissue- and disease-specific context. While macrophage models have been used to study diseases empirically, a systematic analysis of the transcriptome thereof is lacking. Here, we acquired gene expression data from eight commonly-used macrophage models to perform a meta-analysis. Specifically, we obtained gene expression data from unstimulated macrophages (M0) and macrophages stimulated with lipopolysaccharides (LPS) for 2-4 h (M-LPS), LPS for 24 h (M-LPS), LPS and interferon-γ (M-LPS+IFNγ), IFNγ (M-IFNγ), interleukin-4 (M-IL4), interleukin-10 (M-IL10), and dexamethasone (M-dex). Our meta-analysis identified consistently differentially expressed genes that have been implicated in inflammatory and metabolic processes. In addition, we built macIDR, a robust classifier capable of distinguishing macrophage activation states with high accuracy (>0.95). We classified macrophages with macIDR to define their tissue- and disease-specific characteristics. We demonstrate that alveolar macrophages display high resemblance to IL10 activation, but show a drop in IFNγ signature in chronic obstructive pulmonary disease patients. Adipose tissue-derived macrophages were classified as unstimulated macrophages, but acquired LPS-activation features in diabetic-obese patients. Rheumatoid arthritis synovial macrophages exhibit characteristics of IL10- or IFNγ-stimulation. Altogether, we defined consensus transcriptional profiles for the eight macrophage activation states, built a classification model, and demonstrated the utility of the latter for macrophages.

摘要

巨噬细胞是异质性白细胞,受组织和疾病特异性背景调控。虽然巨噬细胞模型已被用于经验性地研究疾病,但对其转录组的系统分析却缺乏。在这里,我们从八个常用的巨噬细胞模型中获取基因表达数据来进行元分析。具体来说,我们从未刺激的巨噬细胞(M0)和用脂多糖(LPS)刺激 2-4 小时的巨噬细胞(M-LPS)、用 LPS 刺激 24 小时的巨噬细胞(M-LPS)、用 LPS 和干扰素-γ(M-LPS+IFNγ)、用干扰素-γ(M-IFNγ)、用白细胞介素-4(M-IL4)、用白细胞介素-10(M-IL10)和地塞米松(M-dex)刺激的巨噬细胞中获得基因表达数据。我们的元分析确定了一致差异表达的基因,这些基因与炎症和代谢过程有关。此外,我们构建了 macIDR,这是一种能够以高精度(>0.95)区分巨噬细胞激活状态的强大分类器。我们用 macIDR 对巨噬细胞进行分类,以定义它们的组织和疾病特异性特征。我们证明肺泡巨噬细胞表现出与 IL10 激活高度相似的特征,但在慢性阻塞性肺疾病患者中 IFNγ 特征下降。脂肪组织来源的巨噬细胞被分类为未刺激的巨噬细胞,但在糖尿病肥胖患者中获得了 LPS 激活的特征。类风湿关节炎滑膜巨噬细胞表现出 IL10 或 IFNγ 刺激的特征。总之,我们为这八个巨噬细胞激活状态定义了共识转录谱,构建了分类模型,并展示了后者对巨噬细胞的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc36/6917623/717425dd3e5f/fimmu-10-02887-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验