Suppr超能文献

灌浆期高温降低豌豆种子氮含量:库限制的证据

High Temperatures During the Seed-Filling Period Decrease Seed Nitrogen Amount in Pea ( L.): Evidence for a Sink Limitation.

作者信息

Larmure Annabelle, Munier-Jolain Nathalie G

机构信息

Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, Dijon, France.

出版信息

Front Plant Sci. 2019 Dec 20;10:1608. doi: 10.3389/fpls.2019.01608. eCollection 2019.

Abstract

Higher temperatures induced by the on-going climate change are a major cause of yield reduction in legumes. Pea ( L.) is an important annual legume crop grown in temperate regions for its high seed nitrogen (N) concentration. In addition to yield, seed N amount at harvest is a crucial characteristic because pea seeds are a source of protein in animal and human nutrition. However, there is little knowledge on the impacts of high temperatures on plant N partitioning determining seed N amount. Therefore, this study investigates the response of seed dry matter and N fluxes at the whole-plant level (plant N uptake, partitioning in vegetative organs, remobilization, and accumulation in seeds) to a range of air temperature (from 18.4 to 33.2°C) during the seed-filling-period. As pea is a legume crop, plants relying on two different N nutrition pathways were grown in glasshouse: N-fixing plants or NO -assimilating plants. Labeled nitrate (NO ) and intra-plant N budgets were used to quantify N fluxes. High temperatures decreased seed-filling duration (by 0.8 day per °C), seed dry-matter and N accumulation rates (respectively by 0.8 and 0.032 mg seed day per °C), and N remobilization from vegetative organs to seeds (by 0.053 mg seed day per °C). Plant N-fixation decreased with temperatures, while plant NO assimilation increased. However, the additional plant N uptake in NO -assimilating plants was never allocated to seeds and a significant quantity of N was still available at maturity in vegetative organs, whatever the plant N nutrition pathway. Thus, we concluded that seed N accumulation under high temperatures is sink limited related to a shorter seed-filling duration and a reduced seed dry-matter accumulation rate. Consequently, sustaining seed sink demand and preserving photosynthetic capacity of stressed plants during the seed-filling period should be promising strategies to promote N allocation to seeds from vegetative parts and thus to maintain crop N production under exacerbated abiotic constraints in field due to the on-going climate change.

摘要

持续的气候变化所导致的温度升高是豆类作物减产的主要原因。豌豆(L.)是一种重要的一年生豆类作物,因其种子氮(N)含量高而种植于温带地区。除产量外,收获时种子的氮含量是一个关键特征,因为豌豆种子是动物和人类营养中的蛋白质来源。然而,关于高温对决定种子氮含量的植物氮分配的影响,人们了解甚少。因此,本研究调查了在灌浆期,一系列气温(从18.4到33.2°C)对全株水平上种子干物质和氮通量(植物氮吸收、在营养器官中的分配、再转运以及在种子中的积累)的响应。由于豌豆是豆类作物,在温室中种植了依赖两种不同氮营养途径的植株:固氮植株或硝酸根同化植株。使用标记硝酸盐(NO)和植株内氮预算来量化氮通量。高温缩短了灌浆持续时间(每升高1°C减少0.8天),降低了种子干物质和氮积累速率(分别为每升高1°C减少0.8毫克种子/天和0.032毫克种子/天),以及从营养器官向种子的氮再转运(每升高1°C减少0.053毫克种子/天)。植物固氮随着温度升高而降低,而植物硝酸根同化增加。然而,无论植物的氮营养途径如何,硝酸根同化植株额外吸收的植物氮从未分配到种子中,并且在成熟时营养器官中仍有大量氮可用。因此,我们得出结论,高温下种子氮积累受库限制,这与较短的灌浆持续时间和降低的种子干物质积累速率有关。因此,在灌浆期维持种子库需求并保持受胁迫植株的光合能力,应该是在田间因持续气候变化导致非生物胁迫加剧的情况下,促进氮从营养部分分配到种子从而维持作物氮产量的有前景的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f87d/6934051/a0b580bdca21/fpls-10-01608-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验