Suppr超能文献

基于表面肌电的假肢控制手势分类的通道选择研究:一项案例研究

Investigation of Channel Selection for Gesture Classification for Prosthesis Control Using Force Myography: A Case Study.

作者信息

Ahmadizadeh Chakaveh, Pousett Brittany, Menon Carlo

机构信息

Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, BC, Canada.

Barber Prosthetics Clinic, Vancouver, BC, Canada.

出版信息

Front Bioeng Biotechnol. 2019 Dec 10;7:331. doi: 10.3389/fbioe.2019.00331. eCollection 2019.

Abstract

Various human machine interfaces (HMIs) are used to control prostheses, such as robotic hands. One of the promising HMIs is Force Myography (FMG). Previous research has shown the potential for the use of high density FMG (HD-FMG) that can lead to higher accuracy of prosthesis control. The more sensors used in an FMG controlled system, the more complicated and costlier the system becomes. This study proposes a design method that can produce powered prostheses with performance comparable to that of HD-FMG controlled systems using a fewer number of sensors. An HD-FMG apparatus would be used to collect information from the user only in the design phase. Channel selection would then be applied to the collected data to determine the number and location of sensors that are vital to performance of the device. This study assessed the use of multiple channel selection (CS) methods for this purpose. In this case study, three datasets were used. These datasets were collected from force sensitive resistors embedded in the inner socket of a subject with transradial amputation. Sensor data were collected as the subject carried out five repetitions of six gestures. Collected data were then used to asses five CS methods: Sequential forward selection (SFS) with two different stopping criteria, minimum redundancy-maximum relevance (mRMR), genetic algorithm (GA), and Boruta. Three out of the five methods (mRMR, GA, and Boruta) were able to decrease channel numbers significantly while maintaining classification accuracy in all datasets. Neither of them outperformed the other two in all datasets. However, GA resulted in the smallest channel subset in all three of the datasets. The three selected methods were also compared in terms of stability [i.e., consistency of the channel subset chosen by the method as new training data were introduced or some training data were removed (Chandrashekar and Sahin, 2014)]. Boruta and mRMR resulted in less instability compared to GA when applied to the datasets of this study. This study shows feasibility of using the proposed design method that can produce prosthetic systems that are simpler than HD-FMG systems but have performance comparable to theirs.

摘要

各种人机接口(HMI)被用于控制假肢,如机器人手。其中一种有前景的人机接口是力肌电描记法(FMG)。先前的研究表明使用高密度FMG(HD-FMG)具有潜力,其可提高假肢控制的准确性。在FMG控制系统中使用的传感器越多,系统就变得越复杂且成本越高。本研究提出一种设计方法,该方法能够使用较少数量的传感器生产出性能与HD-FMG控制系统相当的动力假肢。仅在设计阶段将使用HD-FMG设备从用户那里收集信息。然后对收集到的数据应用通道选择,以确定对设备性能至关重要的传感器数量和位置。本研究评估了为此目的使用多种通道选择(CS)方法的情况。在这个案例研究中,使用了三个数据集。这些数据集是从一名经桡骨截肢患者内套筒中嵌入的力敏电阻器收集的。当受试者对六种手势进行五次重复操作时收集传感器数据。然后将收集到的数据用于评估五种CS方法:具有两种不同停止标准的顺序前向选择(SFS)、最小冗余-最大相关性(mRMR)、遗传算法(GA)和Boruta。五种方法中的三种(mRMR、GA和Boruta)能够在所有数据集中显著减少通道数量,同时保持分类准确率。在所有数据集中,它们中没有一种比其他两种表现更优。然而,GA在所有三个数据集中产生的通道子集最小。还从稳定性方面比较了这三种选定的方法[即当引入新的训练数据或去除一些训练数据时,该方法选择的通道子集的一致性(Chandrashekar和Sahin,2014)]。当应用于本研究的数据集时,与GA相比,Boruta和mRMR产生的不稳定性较小。本研究表明了使用所提出的设计方法的可行性,该方法能够生产出比HD-FMG系统更简单但性能与之相当的假肢系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fae/6914858/280eab7c36d9/fbioe-07-00331-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验