School of Biological Sciences , Nanyang Technological University , 637551 Singapore.
Department of Chemistry & Biochemistry , University of California , Los Angeles , California 90095 , United States.
J Am Chem Soc. 2020 Jan 29;142(4):1673-1679. doi: 10.1021/jacs.9b10086. Epub 2020 Jan 21.
We report the genome-guided discovery of sungeidines, a class of microbial secondary metabolites with unique structural features. Despite evolutionary relationships with dynemicin-type enediynes, the sungeidines are produced by a biosynthetic gene cluster (BGC) that exhibits distinct differences from known enediyne BGCs. Our studies suggest that the sungeidines are assembled from two octaketide chains that are processed differently than those of the dynemicin-type enediynes. The biosynthesis also involves a unique activating sulfotransferase that promotes a dehydration reaction. The loss of genes, including a putative epoxidase gene, is likely to be the main cause of the divergence of the sungeidine pathway from other canonical enediyne pathways. The findings disclose the surprising evolvability of enediyne pathways and set the stage for characterizing the intriguing enzymatic steps in sungeidine biosynthesis.
我们报告了 sungeidines 的基因组指导发现,这是一类具有独特结构特征的微生物次生代谢产物。尽管与 dynemicin 型烯二炔具有进化关系,但 sungeidines 是由一个生物合成基因簇 (BGC) 产生的,该基因簇与已知的 enediyne BGC 具有明显的不同。我们的研究表明,sungeidines 是由两条八酮酸链组装而成的,其加工方式与 dynemicin 型烯二炔不同。生物合成还涉及一种独特的激活硫转移酶,促进脱水反应。基因的缺失,包括一个假定的环氧化酶基因,很可能是 sungeidine 途径与其他典型烯二炔途径分化的主要原因。这些发现揭示了烯二炔途径惊人的可进化性,并为表征 sungeidine 生物合成中引人入胜的酶促步骤奠定了基础。