Suppr超能文献

膜分子拥挤增强 MreB 聚合,将合成细胞从球体形状变为杆状。

Membrane molecular crowding enhances MreB polymerization to shape synthetic cells from spheres to rods.

机构信息

School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455.

Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10021

出版信息

Proc Natl Acad Sci U S A. 2020 Jan 28;117(4):1902-1909. doi: 10.1073/pnas.1914656117. Epub 2020 Jan 13.

Abstract

Executing gene circuits by cell-free transcription-translation into cell-sized compartments, such as liposomes, is one of the major bottom-up approaches to building minimal cells. The dynamic synthesis and proper self-assembly of macromolecular structures inside liposomes, the cytoskeleton in particular, stands as a central limitation to the development of cell analogs genetically programmed. In this work, we express the gene inside vesicles with bilayers made of lipid-polyethylene glycol (PEG). We demonstrate that two-dimensional molecular crowding, emulated by the PEG molecules at the lipid bilayer, is enough to promote the polymerization of the protein MreB at the inner membrane into a sturdy cytoskeleton capable of transforming spherical liposomes into elongated shapes, such as rod-like compartments. We quantitatively describe this mechanism with respect to the size of liposomes, lipid composition of the membrane, crowding at the membrane, and strength of MreB synthesis. So far unexplored, molecular crowding at the surface of synthetic cells emerges as an additional development with potential broad applications. The symmetry breaking observed could be an important step toward compartment self-reproduction.

摘要

通过无细胞转录-翻译将基因电路执行到细胞大小的隔室(如脂质体)中,是构建最小细胞的主要自下而上方法之一。脂质体内部大分子结构的动态合成和适当的自组装,特别是细胞骨架,是遗传编程细胞类似物发展的主要限制因素。在这项工作中,我们在由脂质-聚乙二醇(PEG)制成的双层膜的囊泡中表达基因。我们证明,二维分子拥挤,由脂质双层中的 PEG 分子模拟,足以促进蛋白质 MreB 在内膜上的聚合,形成坚固的细胞骨架,能够将球形脂质体转化成长形,如杆状隔室。我们定量描述了这种机制,涉及脂质体的大小、膜的脂质组成、膜上的拥挤程度和 MreB 合成的强度。到目前为止,在合成细胞表面的分子拥挤现象作为一个具有潜在广泛应用的额外发展而被探索。观察到的对称破缺可能是隔室自我复制的重要步骤。

相似文献

1
Membrane molecular crowding enhances MreB polymerization to shape synthetic cells from spheres to rods.
Proc Natl Acad Sci U S A. 2020 Jan 28;117(4):1902-1909. doi: 10.1073/pnas.1914656117. Epub 2020 Jan 13.
2
Assembly of MreB filaments on liposome membranes: a synthetic biology approach.
ACS Synth Biol. 2012 Feb 17;1(2):53-9. doi: 10.1021/sb200003v. Epub 2011 Dec 7.
3
Analysis of Cytoplasmic and Membrane Molecular Crowding in Genetically Programmed Synthetic Cells.
Biomacromolecules. 2020 Jul 13;21(7):2808-2817. doi: 10.1021/acs.biomac.0c00513. Epub 2020 Jun 9.
4
TXTL-based approach to synthetic cells.
Methods Enzymol. 2019;617:217-239. doi: 10.1016/bs.mie.2018.12.015. Epub 2019 Jan 30.
5
Cell-free biogenesis of bacterial division proto-rings that can constrict liposomes.
Commun Biol. 2020 Sep 30;3(1):539. doi: 10.1038/s42003-020-01258-9.
6
RodZ (YfgA) is required for proper assembly of the MreB actin cytoskeleton and cell shape in E. coli.
EMBO J. 2009 Feb 4;28(3):193-204. doi: 10.1038/emboj.2008.264. Epub 2008 Dec 11.
7
Exclusion of assembled MreB by anionic phospholipids at cell poles confers cell polarity for bidirectional growth.
Mol Microbiol. 2017 May;104(3):472-486. doi: 10.1111/mmi.13639. Epub 2017 Feb 24.
8
How to Build a Bacterial Cell: MreB as the Foreman of E. coli Construction.
Cell. 2018 Mar 8;172(6):1294-1305. doi: 10.1016/j.cell.2018.02.050.
9
MreB: pilot or passenger of cell wall synthesis?
Trends Microbiol. 2012 Feb;20(2):74-9. doi: 10.1016/j.tim.2011.11.004. Epub 2011 Dec 7.
10
MreB-Dependent Organization of the E. coli Cytoplasmic Membrane Controls Membrane Protein Diffusion.
Biophys J. 2016 Mar 8;110(5):1139-49. doi: 10.1016/j.bpj.2016.01.010.

引用本文的文献

1
Reconstituted systems for studying the architecture and dynamics of actin networks.
Biochem J. 2025 May 23;482(11):691-708. doi: 10.1042/BCJ20253044.
2
Artificial cell system as a tool for investigating pattern formation mechanisms of intracellular reaction-diffusion waves.
Biophys Physicobiol. 2024 Oct 10;21(4):e210022. doi: 10.2142/biophysico.bppb-v21.0022. eCollection 2024.
3
Cell-Free Gene Expression: Methods and Applications.
Chem Rev. 2025 Jan 8;125(1):91-149. doi: 10.1021/acs.chemrev.4c00116. Epub 2024 Dec 19.
4
Artificial cells for in vivo biomedical applications through red blood cell biomimicry.
Nat Commun. 2024 Mar 20;15(1):2504. doi: 10.1038/s41467-024-46732-8.
5
Functional metal-phenolic cortical cytoskeleton for artificial cells.
Sci Adv. 2024 Feb 16;10(7):eadj4047. doi: 10.1126/sciadv.adj4047.
7
Efficient transfected liposomes co-loaded with pNrf2 and pirfenidone improves safe delivery for enhanced pulmonary fibrosis reversion.
Mol Ther Nucleic Acids. 2023 Apr 11;32:415-431. doi: 10.1016/j.omtn.2023.04.006. eCollection 2023 Jun 13.
8
Synthesis of lipid membranes for artificial cells.
Nat Rev Chem. 2021 Oct;5(10):676-694. doi: 10.1038/s41570-021-00303-3. Epub 2021 Jul 19.
9
Crowding-induced morphological changes in synthetic lipid vesicles determined using smFRET.
Front Bioeng Biotechnol. 2022 Oct 28;10:958026. doi: 10.3389/fbioe.2022.958026. eCollection 2022.
10
Water Stress-Driven Changes in Bacterial Cell Surface Properties.
Appl Environ Microbiol. 2022 Nov 8;88(21):e0073222. doi: 10.1128/aem.00732-22. Epub 2022 Oct 13.

本文引用的文献

1
An Adaptive Synthetic Cell Based on Mechanosensing, Biosensing, and Inducible Gene Circuits.
ACS Synth Biol. 2019 Aug 16;8(8):1913-1920. doi: 10.1021/acssynbio.9b00204. Epub 2019 Jul 25.
2
Artificial photosynthetic cell producing energy for protein synthesis.
Nat Commun. 2019 Mar 22;10(1):1325. doi: 10.1038/s41467-019-09147-4.
3
Characterization of the all-E. coli transcription-translation system myTXTL by mass spectrometry.
Rapid Commun Mass Spectrom. 2019 May 15;33(11):1036-1048. doi: 10.1002/rcm.8438.
4
TXTL-based approach to synthetic cells.
Methods Enzymol. 2019;617:217-239. doi: 10.1016/bs.mie.2018.12.015. Epub 2019 Jan 30.
6
Self-replication of DNA by its encoded proteins in liposome-based synthetic cells.
Nat Commun. 2018 Apr 20;9(1):1583. doi: 10.1038/s41467-018-03926-1.
7
De Novo Synthesis of Basal Bacterial Cell Division Proteins FtsZ, FtsA, and ZipA Inside Giant Vesicles.
ACS Synth Biol. 2018 Apr 20;7(4):953-961. doi: 10.1021/acssynbio.7b00350. Epub 2018 Mar 13.
8
Cell-free protein synthesis in micro compartments: building a minimal cell from biobricks.
N Biotechnol. 2017 Oct 25;39(Pt B):199-205. doi: 10.1016/j.nbt.2017.06.014. Epub 2017 Jul 6.
9
Cell-sized mechanosensitive and biosensing compartment programmed with DNA.
Chem Commun (Camb). 2017 Jun 29;53(53):7349-7352. doi: 10.1039/c7cc03455e.
10
Artificial cells: from basic science to applications.
Mater Today (Kidlington). 2016 Nov;19(9):516-532. doi: 10.1016/j.mattod.2016.02.020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验