Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
School of Electronic Engineering, Xidian University, Xi'an, 710071, China.
Biomed Eng Online. 2020 Jan 15;19(1):4. doi: 10.1186/s12938-020-0748-9.
Site-specific variations are challenges for pooling analyses in multi-center studies. This work aims to propose an inter-site harmonization method based on dual generative adversarial networks (GANs) for diffusion tensor imaging (DTI) derived metrics on neonatal brains.
DTI-derived metrics (fractional anisotropy, FA; mean diffusivity, MD) are obtained on age-matched neonates without magnetic resonance imaging (MRI) abnormalities: 42 neonates from site 1 and 42 neonates from site 2. Significant inter-site differences of FA can be observed. The proposed harmonization approach and three conventional methods (the global-wise scaling, the voxel-wise scaling, and the ComBat) are performed on DTI-derived metrics from two sites. During the tract-based spatial statistics, inter-site differences can be removed by the proposed dual GANs method, the voxel-wise scaling, and the ComBat. Among these methods, the proposed method holds the lowest median values in absolute errors and root mean square errors. During the pooling analysis of two sites, Pearson correlation coefficients between FA and the postmenstrual age after harmonization are larger than those before harmonization. The effect sizes (Cohen's d between males and females) are also maintained by the harmonization procedure.
The proposed dual GANs-based harmonization method is effective to harmonize neonatal DTI-derived metrics from different sites. Results in this study further suggest that the GANs-based harmonization is a feasible pre-processing method for pooling analyses in multi-center studies.
在多中心研究中,针对特定部位的变化是进行汇总分析的挑战。本研究旨在提出一种基于双生成对抗网络(GAN)的方法,用于对新生儿脑的弥散张量成像(DTI)衍生指标进行跨站点协调。
对无磁共振成像(MRI)异常的年龄匹配新生儿进行了 DTI 衍生指标(各向异性分数,FA;平均弥散度,MD)的测量:站点 1 有 42 例新生儿,站点 2 有 42 例新生儿。可以观察到 FA 存在显著的跨站点差异。在来自两个站点的 DTI 衍生指标上,应用了所提出的协调方法和三种传统方法(全局比例缩放、体素比例缩放和 ComBat)。在基于束的空间统计学中,通过所提出的双 GANs 方法、体素比例缩放和 ComBat 可以消除跨站点差异。在这些方法中,所提出的方法在绝对误差和均方根误差的中位数值最低。在两个站点的汇总分析中,协调后 FA 与孕龄后的 Pearson 相关系数大于协调前的相关系数。协调过程还保持了效应大小(男性和女性之间的 Cohen's d)。
所提出的基于双 GANs 的协调方法可有效协调来自不同站点的新生儿 DTI 衍生指标。本研究的结果进一步表明,基于 GANs 的协调是多中心研究中汇总分析的一种可行的预处理方法。