Suppr超能文献

MISPEL:一种用于多扫描仪神经影像学数据的有监督深度学习协调方法。

MISPEL: A supervised deep learning harmonization method for multi-scanner neuroimaging data.

机构信息

Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA.

Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.

出版信息

Med Image Anal. 2023 Oct;89:102926. doi: 10.1016/j.media.2023.102926. Epub 2023 Aug 9.

Abstract

Large-scale data obtained from aggregation of already collected multi-site neuroimaging datasets has brought benefits such as higher statistical power, reliability, and robustness to the studies. Despite these promises from growth in sample size, substantial technical variability stemming from differences in scanner specifications exists in the aggregated data and could inadvertently bias any downstream analyses on it. Such a challenge calls for data normalization and/or harmonization frameworks, in addition to comprehensive criteria to estimate the scanner-related variability and evaluate the harmonization frameworks. In this study, we propose MISPEL (Multi-scanner Image harmonization via Structure Preserving Embedding Learning), a supervised multi-scanner harmonization method that is naturally extendable to more than two scanners. We also designed a set of criteria to investigate the scanner-related technical variability and evaluate the harmonization techniques. As an essential requirement of our criteria, we introduced a multi-scanner matched dataset of 3T T1 images across four scanners, which, to the best of our knowledge is one of the few datasets of this kind. We also investigated our evaluations using two popular segmentation frameworks: FSL and segmentation in statistical parametric mapping (SPM). Lastly, we compared MISPEL to popular methods of normalization and harmonization, namely White Stripe, RAVEL, and CALAMITI. MISPEL outperformed these methods and is promising for many other neuroimaging modalities.

摘要

从已经收集的多地点神经影像学数据集聚合获得的大规模数据为研究带来了更高的统计功效、可靠性和稳健性等好处。尽管样本量的增加带来了这些好处,但聚合数据中存在由于扫描仪规格差异引起的大量技术可变性,这可能会无意中影响对其进行的任何下游分析。这种挑战需要数据归一化和/或调和框架,以及综合标准来估计与扫描仪相关的可变性并评估调和框架。在这项研究中,我们提出了 MISPEL(通过结构保持嵌入学习进行多扫描仪图像调和),这是一种监督式多扫描仪调和方法,可以自然地扩展到两个以上的扫描仪。我们还设计了一组标准来研究与扫描仪相关的技术可变性并评估调和技术。作为我们标准的基本要求,我们引入了一个由四个扫描仪的 3T T1 图像组成的多扫描仪匹配数据集,据我们所知,这是此类数据集之一。我们还使用两种流行的分割框架(FSL 和统计参数映射中的分割(SPM))来研究我们的评估。最后,我们将 MISPEL 与归一化和调和的常用方法(即 White Stripe、RAVEL 和 CALAMITI)进行了比较。MISPEL 优于这些方法,对于许多其他神经影像学模式很有前途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03a6/10529705/d48b1fa8d2ac/nihms-1923679-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验