Suppr超能文献

CRISPR 工具在医学真菌学中的应用:现状与展望。

The CRISPR toolbox in medical mycology: State of the art and perspectives.

机构信息

School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland.

Département de Parasitologie et Mycologie Médicale, Université de Nantes, Nantes Université, EA1155 -IICiMed, Nantes, France.

出版信息

PLoS Pathog. 2020 Jan 16;16(1):e1008201. doi: 10.1371/journal.ppat.1008201. eCollection 2020 Jan.

Abstract

Fungal pathogens represent a major human threat affecting more than a billion people worldwide. Invasive infections are on the rise, which is of considerable concern because they are accompanied by an escalation of antifungal resistance. Deciphering the mechanisms underlying virulence traits and drug resistance strongly relies on genetic manipulation techniques such as generating mutant strains carrying specific mutations, or gene deletions. However, these processes have often been time-consuming and cumbersome in fungi due to a number of complications, depending on the species (e.g., diploid genomes, lack of a sexual cycle, low efficiency of transformation and/or homologous recombination, lack of cloning vectors, nonconventional codon usage, and paucity of dominant selectable markers). These issues are increasingly being addressed by applying clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 mediated genetic manipulation to medically relevant fungi. Here, we summarize the state of the art of CRISPR-Cas9 applications in four major human fungal pathogen lineages: Candida spp., Cryptococcus neoformans, Aspergillus fumigatus, and Mucorales. We highlight the different ways in which CRISPR has been customized to address the critical issues in different species, including different strategies to deliver the CRISPR-Cas9 elements, their transient or permanent expression, use of codon-optimized CAS9, and methods of marker recycling and scarless editing. Some approaches facilitate a more efficient use of homology-directed repair in fungi in which nonhomologous end joining is more commonly used to repair double-strand breaks (DSBs). Moreover, we highlight the most promising future perspectives, including gene drives, programmable base editors, and nonediting applications, some of which are currently available only in model fungi but may be adapted for future applications in pathogenic species. Finally, this review discusses how the further evolution of CRISPR technology will allow mycologists to tackle the multifaceted issue of fungal pathogenesis.

摘要

真菌病原体对全球超过 10 亿人构成重大人类威胁。侵袭性感染呈上升趋势,这令人相当担忧,因为它们伴随着抗真菌药物耐药性的加剧。解析毒力特征和耐药性的机制在很大程度上依赖于遗传操作技术,例如生成携带特定突变或基因缺失的突变株。然而,由于许多复杂因素,这些过程在真菌中常常耗时且繁琐,具体取决于物种(例如,二倍体基因组、缺乏有性周期、转化和/或同源重组效率低、缺乏克隆载体、非常规密码子使用和缺乏显性选择标记)。这些问题越来越多地通过将 CRISPR-Cas9 介导的遗传操作应用于医学相关真菌来解决。在这里,我们总结了 CRISPR-Cas9 在四大主要人类真菌病原体谱系中的应用现状:念珠菌属、新型隐球菌、烟曲霉和毛霉目。我们强调了 CRISPR 被定制以解决不同物种中关键问题的不同方式,包括向不同物种递送 CRISPR-Cas9 元件的不同策略、其瞬时或永久表达、使用密码子优化的 CAS9,以及标记回收和无痕编辑的方法。一些方法促进了同源定向修复在真菌中的更有效利用,其中非同源末端连接更常用于修复双链断裂(DSB)。此外,我们强调了最有前途的未来展望,包括基因驱动、可编程碱基编辑器和非编辑应用,其中一些目前仅在模式真菌中可用,但可能适用于未来在致病物种中的应用。最后,本综述讨论了 CRISPR 技术的进一步发展将如何使真菌学家能够解决真菌发病机制的多方面问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c38b/6964833/1a66e2782e1f/ppat.1008201.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验