Iakovakis Dimitrios, Diniz Jose A, Trivedi Dhaval, Chaudhuri Ray K, Hadjileontiadis Leontios J, Hadjidimitriou Stelios, Charisis Vasileios, Bostanjopoulou Sevasti, Katsarou Zoe, Klingelhoefer Lisa, Mayer Simone, Reichmann Heinz, Dias Sofia B
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:3535-3538. doi: 10.1109/EMBC.2019.8857211.
Parkinson's Disease (PD) is the second most common neurodegenerative disorder worldwide, causing both motor and non-motor symptoms. In the early stages, symptoms are mild and patients may ignore their existence. As a result, they do not undergo any related clinical examination; hence delaying their PD diagnosis. In an effort to remedy such delay, analysis of data passively captured from user's interaction with consumer technologies has been recently explored towards remote screening of early PD motor signs. In the current study, a smartphone-based method analyzing subjects' finger interaction with the smartphone screen is developed for the quantification of fine-motor skills decline in early PD using Convolutional Neural Networks. Experimental results from the analysis of keystroke typing in-the-clinic data from 18 early PD patients and 15 healthy controls have shown a classification performance of 0.89 Area Under the Curve (AUC) with 0.79/0.79 sensitivity/specificity, respectively. Evaluation of the generalization ability of the proposed approach was made by its application on typing data arising from a separate self-reported cohort of 27 PD patients' and 84 healthy controls' daily usage with their personal smartphones (data in-the-wild), achieving 0.79 AUC with 0.74/0.78 sensitivity/specificity, respectively. The results show the potentiality of the proposed approach to process keystroke dynamics arising from users' natural typing activity to detect PD, which contributes to the development of digital tools for remote pathological symptom screening.
帕金森病(PD)是全球第二常见的神经退行性疾病,会导致运动和非运动症状。在早期阶段,症状较为轻微,患者可能会忽视其存在。因此,他们不会接受任何相关的临床检查,从而延误了帕金森病的诊断。为了纠正这种延误,最近人们探索了对用户与消费技术交互过程中被动捕获的数据进行分析,以实现对早期帕金森病运动体征的远程筛查。在当前的研究中,开发了一种基于智能手机的方法,通过卷积神经网络分析受试者与智能手机屏幕的手指交互,以量化早期帕金森病患者精细运动技能的下降情况。对18名早期帕金森病患者和15名健康对照者的临床按键输入数据进行分析的实验结果显示,曲线下面积(AUC)为0.89,灵敏度/特异性分别为0.79/0.79。通过将所提出的方法应用于来自27名帕金森病患者和84名健康对照者个人智能手机日常使用情况的单独自我报告队列(实际使用数据)产生的打字数据,对该方法的泛化能力进行了评估,结果分别为AUC 0.79,灵敏度/特异性为0.74/0.78。结果表明,所提出的方法具有处理用户自然打字活动产生的按键动态信息以检测帕金森病的潜力,这有助于开发用于远程病理症状筛查的数字工具。