Suppr超能文献

通过与键盘的自然打字交互检测早期帕金森病的运动障碍:在非受控家庭环境中对neuroQWERTY方法的验证。

Detecting Motor Impairment in Early Parkinson's Disease via Natural Typing Interaction With Keyboards: Validation of the neuroQWERTY Approach in an Uncontrolled At-Home Setting.

作者信息

Arroyo-Gallego Teresa, Ledesma-Carbayo María J, Butterworth Ian, Matarazzo Michele, Montero-Escribano Paloma, Puertas-Martín Verónica, Gray Martha L, Giancardo Luca, Sánchez-Ferro Álvaro

机构信息

Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States.

Biomedical Image Technologies, Universidad Politécnica de Madrid, Madrid, Spain.

出版信息

J Med Internet Res. 2018 Mar 26;20(3):e89. doi: 10.2196/jmir.9462.

Abstract

BACKGROUND

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease and one of the most common forms of movement disorder. Although there is no known cure for PD, existing therapies can provide effective symptomatic relief. However, optimal titration is crucial to avoid adverse effects. Today, decision making for PD management is challenging because it relies on subjective clinical evaluations that require a visit to the clinic. This challenge has motivated recent research initiatives to develop tools that can be used by nonspecialists to assess psychomotor impairment. Among these emerging solutions, we recently reported the neuroQWERTY index, a new digital marker able to detect motor impairment in an early PD cohort through the analysis of the key press and release timing data collected during a controlled in-clinic typing task.

OBJECTIVE

The aim of this study was to extend the in-clinic implementation to an at-home implementation by validating the applicability of the neuroQWERTY approach in an uncontrolled at-home setting, using the typing data from subjects' natural interaction with their laptop to enable remote and unobtrusive assessment of PD signs.

METHODS

We implemented the data-collection platform and software to enable access and storage of the typing data generated by users while using their computer at home. We recruited a total of 60 participants; of these participants 52 (25 people with Parkinson's and 27 healthy controls) provided enough data to complete the analysis. Finally, to evaluate whether our in-clinic-built algorithm could be used in an uncontrolled at-home setting, we compared its performance on the data collected during the controlled typing task in the clinic and the results of our method using the data passively collected at home.

RESULTS

Despite the randomness and sparsity introduced by the uncontrolled setting, our algorithm performed nearly as well in the at-home data (area under the receiver operating characteristic curve [AUC] of 0.76 and sensitivity/specificity of 0.73/0.69) as it did when used to evaluate the in-clinic data (AUC 0.83 and sensitivity/specificity of 0.77/0.72). Moreover, the keystroke metrics presented a strong correlation between the 2 typing settings, which suggests a minimal influence of the in-clinic typing task in users' normal typing.

CONCLUSIONS

The finding that an algorithm trained on data from an in-clinic setting has comparable performance with that tested on data collected through naturalistic at-home computer use reinforces the hypothesis that subtle differences in motor function can be detected from typing behavior. This work represents another step toward an objective, user-convenient, and quasi-continuous monitoring tool for PD.

摘要

背景

帕金森病(PD)是第二常见的神经退行性疾病,也是最常见的运动障碍形式之一。尽管目前尚无治愈帕金森病的方法,但现有疗法可有效缓解症状。然而,最佳滴定对于避免不良反应至关重要。如今,帕金森病管理的决策具有挑战性,因为它依赖于需要到诊所就诊的主观临床评估。这一挑战推动了近期的研究计划,旨在开发可供非专科医生使用的工具来评估精神运动障碍。在这些新兴解决方案中,我们最近报告了神经QWERTY指数,这是一种新的数字标志物,能够通过分析在受控的诊所打字任务中收集的按键和释放时间数据,在早期帕金森病队列中检测运动障碍。

目的

本研究的目的是通过验证神经QWERTY方法在不受控制的家庭环境中的适用性,将诊所内的实施扩展到家庭实施,利用受试者与笔记本电脑自然交互产生的打字数据,实现对帕金森病体征的远程和非侵入性评估。

方法

我们实施了数据收集平台和软件,以便在用户在家使用计算机时访问和存储他们生成的打字数据。我们共招募了60名参与者;其中52名(25名帕金森病患者和27名健康对照)提供了足够的数据以完成分析。最后,为了评估我们在诊所构建的算法是否可用于不受控制的家庭环境,我们比较了其在诊所受控打字任务期间收集的数据上的性能,以及我们使用在家被动收集的数据的方法的结果。

结果

尽管不受控制的环境引入了随机性和稀疏性,但我们的算法在家庭数据上的表现(受试者工作特征曲线下面积[AUC]为0.76,灵敏度/特异性为0.73/0.69)与用于评估诊所数据时的表现(AUC为0.83,灵敏度/特异性为0.77/0.72)几乎相同。此外,按键指标在两种打字环境之间呈现出强烈的相关性,这表明诊所打字任务对用户正常打字的影响最小。

结论

基于诊所环境数据训练的算法与通过自然的家庭计算机使用收集的数据测试的算法具有可比性能,这一发现强化了从打字行为中可以检测到运动功能细微差异的假设。这项工作朝着一种客观、用户方便且近乎连续的帕金森病监测工具又迈出了一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e0b/5891671/8c0fbc0ab675/jmir_v20i3e89_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验