School of Automation, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
Sensors (Basel). 2020 Sep 16;20(18):5283. doi: 10.3390/s20185283.
The development of fast and robust brain-computer interface (BCI) systems requires non-complex and efficient computational tools. The modern procedures adopted for this purpose are complex which limits their use in practical applications. In this study, for the first time, and to the best of our knowledge, a successive decomposition index (SDI)-based feature extraction approach is utilized for the classification of motor and mental imagery electroencephalography (EEG) tasks. First of all, the public datasets IVa, IVb, and V from BCI competition III were denoised using multiscale principal analysis (MSPCA), and then a SDI feature was calculated corresponding to each trial of the data. Finally, six benchmark machine learning and neural network classifiers were used to evaluate the performance of the proposed method. All the experiments were performed for motor and mental imagery datasets in binary and multiclass applications using a 10-fold cross-validation method. Furthermore, computerized automatic detection of motor and mental imagery using SDI (CADMMI-SDI) is developed to describe the proposed approach practically. The experimental results suggest that the highest classification accuracy of 97.46% (Dataset IVa), 99.52% (Dataset IVb), and 99.33% (Dataset V) was obtained using feedforward neural network classifier. Moreover, a series of experiments, namely, statistical analysis, channels variation, classifier parameters variation, processed and unprocessed data, and computational complexity, were performed and it was concluded that SDI is robust for noise, and a non-complex and efficient biomarker for the development of fast and accurate motor and mental imagery BCI systems.
快速稳健的脑机接口 (BCI) 系统的发展需要非复杂且高效的计算工具。为此采用的现代方法程序复杂,限制了它们在实际应用中的使用。在这项研究中,首次,据我们所知,采用基于连续分解指数 (SDI) 的特征提取方法对运动和心理意象脑电图 (EEG) 任务进行分类。首先,使用多尺度主成分分析 (MSPCA) 对 BCI 竞赛 III 的公共数据集 IVa、IVb 和 V 进行去噪,然后计算对应于数据中每个试验的 SDI 特征。最后,使用六个基准机器学习和神经网络分类器评估所提出方法的性能。所有实验均在二进制和多类应用中对运动和心理意象数据集进行,使用 10 折交叉验证方法。此外,开发了使用 SDI 的计算机自动检测运动和心理意象 (CADMMI-SDI) 以实际描述所提出的方法。实验结果表明,使用前馈神经网络分类器获得了最高的分类精度,分别为 97.46%(数据集 IVa)、99.52%(数据集 IVb)和 99.33%(数据集 V)。此外,还进行了一系列实验,即统计分析、通道变化、分类器参数变化、处理和未处理数据以及计算复杂性,得出结论 SDI 对噪声鲁棒,是开发快速准确的运动和心理意象 BCI 系统的一种非复杂且高效的生物标志物。