Suppr超能文献

4T1 转移性乳腺癌的疾病进展模型。

Disease progression model of 4T1 metastatic breast cancer.

机构信息

Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.

School of Pharmacy, University of Otago, Dunedin, 9054, New Zealand.

出版信息

J Pharmacokinet Pharmacodyn. 2020 Feb;47(1):105-116. doi: 10.1007/s10928-020-09673-5. Epub 2020 Jan 22.

Abstract

Cancer metastasis is the main cause of death in various types of cancer. However, in the field of pharmacometrics, cancer disease progression models focus on the growth of primary tumors with tumor volume or weight as target values, while the metastasis process is less mentioned. We propose a series of mathematical models to quantitatively describe and predict the disease progression of 4T1 breast cancer in the aspect of primary breast tumor, lung metastasis and white blood cell. The 4T1 cells were injected into breast fat pad of female BALB/c mice to establish an animal model of breast cancer metastasis. The number and volume of lung metastases at different times were measured. Based on the above data, a disease progression model of breast cancer lung metastasis was established and parameter values were estimated. The white blood cell growth and the primary tumor growth of 4T1 mouse are also modeled. The established models can describe the lung metastasis of 4T1 breast cancer in three aspects: (1) the increase in metastasis number; (2) the growth of metastasis volume; (3) metastasis number-size distribution at different time points. Compared with the prior metastasis models based on von Forester equation, our models distinguished the growth rate of primary tumor and metastasis and got parameter values for 4T1 mouse model. And the current models optimized the metastasis number-size distribution model by utilizing logistic function instead of the prior power function. This study provides a comprehensive description of lung metastasis progression for 4T1 breast cancer model, as well as an alternative disease progression model structure for further pharmacodynamics modeling.

摘要

癌症转移是各种类型癌症死亡的主要原因。然而,在药物代谢动力学领域,癌症疾病进展模型主要集中在以肿瘤体积或重量为目标值的原发性肿瘤生长上,而对转移过程的关注较少。我们提出了一系列数学模型,从原发性乳腺肿瘤、肺转移和白细胞三个方面定量描述和预测 4T1 乳腺癌的疾病进展。将 4T1 细胞注射到雌性 BALB/c 小鼠的乳腺脂肪垫中,建立乳腺癌转移的动物模型。测量不同时间点肺转移的数量和体积。基于上述数据,建立了乳腺癌肺转移的疾病进展模型,并估计了参数值。还对 4T1 小鼠的白细胞生长和原发性肿瘤生长进行了建模。所建立的模型可以从三个方面描述 4T1 乳腺癌的肺转移:(1)转移数量的增加;(2)转移体积的增长;(3)不同时间点转移数量-大小分布。与基于冯·福雷斯特方程的先前转移模型相比,我们的模型区分了原发性肿瘤和转移的生长速度,并为 4T1 小鼠模型获得了参数值。并且当前模型通过利用逻辑函数而不是先前的幂函数优化了转移数量-大小分布模型。这项研究为 4T1 乳腺癌模型的肺转移进展提供了全面的描述,并为进一步的药效动力学建模提供了替代的疾病进展模型结构。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验