Suppr超能文献

结合计算机致心律失常风险测定和 tPKPD 模型预测麻醉豚鼠试验中的 QTc 间期延长。

Combining an in silico proarrhythmic risk assay with a tPKPD model to predict QTc interval prolongation in the anesthetized guinea pig assay.

机构信息

Safety Assessment & Laboratory Animal Resources (SALAR), Merck & Co., Inc., West Point, PA, USA.

Certara UK Limited, Simcyp Division, Sheffield, UK; Jagiellonian University Medical College, Faculty of Pharmacy, Krakow, Poland.

出版信息

Toxicol Appl Pharmacol. 2020 Mar 1;390:114883. doi: 10.1016/j.taap.2020.114883. Epub 2020 Jan 23.

Abstract

Human-based in silico models are emerging as important tools to study the effects of integrating inward and outward ion channel currents to predict clinical proarrhythmic risk. The aims of this study were 2-fold: 1) Evaluate the capacity of an in silico model to predict QTc interval prolongation in the in vivo anesthetized cardiovascular guinea pig (CVGP) assay for new chemical entities (NCEs) and; 2) Determine if a translational pharmacokinetic/pharmacodynamic (tPKPD) model can improve the predictive capacity. In silico simulations for NCEs were performed using a population of human ventricular action potential (AP) models. PatchXpress® (PX) or high throughput screening (HTS) ion channel data from respectively n = 73 and n = 51 NCEs were used as inputs for the in silico population. These NCEs were also tested in the CVGP (n = 73). An M5 pruned decision tree-based regression tPKPD model was used to evaluate the concentration at which an NCE is liable to prolong the QTc interval in the CVGP. In silico results successfully predicted the QTc interval prolongation outcome observed in the CVGP with an accuracy/specificity of 85%/73% and 75%/77%, when using PX and HTS ion channel data, respectively. Considering the tPKPD predicted concentration resulting in QTc prolongation (EC) increased accuracy/specificity to 97%/95% using PX and 88%/97% when using HTS. Our results support that human-based in silico simulations in combination with tPKPD modeling can provide correlative results with a commonly used early in vivo safety assay, suggesting a path toward more rapid NCE assessment with reduced resources, cycle time, and animal use.

摘要

基于人体的计算模型正在成为研究整合内向和外向离子通道电流以预测临床致心律失常风险的重要工具。本研究的目的有两个:1)评估计算模型预测新化学实体(NCE)在体内麻醉心血管豚鼠(CVGP)试验中 QTc 间期延长的能力;2)确定转化药代动力学/药效学(tPKPD)模型是否可以提高预测能力。使用人群心室动作电位(AP)模型对 NCE 进行了计算模拟。使用分别来自 73 个和 51 个 NCE 的人群 PX 或高通量筛选(HTS)离子通道数据作为计算模型的输入。这些 NCE 也在 CVGP 中进行了测试(n=73)。使用基于 M5 修剪决策树的回归 tPKPD 模型来评估 NCE 延长 CVGP 中 QTc 间隔的浓度。当使用 PX 和 HTS 离子通道数据时,计算结果成功地预测了 CVGP 中观察到的 QTc 间期延长结果,准确率/特异性分别为 85%/73%和 75%/77%。考虑到导致 QTc 延长的 tPKPD 预测浓度(EC),使用 PX 可将准确率/特异性提高到 97%/95%,而使用 HTS 则可提高到 88%/97%。我们的结果支持将人体计算模拟与 tPKPD 建模相结合,可以提供与常用早期体内安全性试验相关的结果,表明通过减少资源、周期时间和动物使用,可以更快速地评估 NCE。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验