Suppr超能文献

mRNA 衰变因子 CAR-1/LSM14 通过线粒体钙动力学调节轴突再生。

The mRNA Decay Factor CAR-1/LSM14 Regulates Axon Regeneration via Mitochondrial Calcium Dynamics.

机构信息

Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.

Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.

出版信息

Curr Biol. 2020 Mar 9;30(5):865-876.e7. doi: 10.1016/j.cub.2019.12.061. Epub 2020 Jan 23.

Abstract

mRNA decay factors regulate mRNA turnover by recruiting non-translating mRNAs and targeting them for translational repression and mRNA degradation. How mRNA decay pathways regulate cellular function in vivo with specificity is poorly understood. Here, we show that C. elegans mRNA decay factors, including the translational repressors CAR-1/LSM14 and CGH-1/DDX6, and the decapping enzymes DCAP-1/DCP1, function in neurons to differentially regulate axon development, maintenance, and regrowth following injury. In neuronal cell bodies, CAR-1 fully colocalizes with CGH-1 and partially colocalizes with DCAP-1, suggesting that mRNA decay components form at least two types of cytoplasmic granules. Following axon injury in adult neurons, loss of CAR-1 or CGH-1 results in increased axon regrowth and growth cone formation, whereas loss of DCAP-1 or DCAP-2 results in reduced regrowth. To determine how CAR-1 inhibits regrowth, we analyzed mRNAs bound to pan-neuronally expressed GFP::CAR-1 using a crosslinking and immunoprecipitation-based approach. Among the putative mRNA targets of CAR-1, we characterized the roles of micu-1, a regulator of the mitochondrial calcium uniporter MCU-1, in axon injury. We show that loss of car-1 results increased MICU-1 protein levels, and that enhanced axon regrowth in car-1 mutants is dependent on micu-1 and mcu-1. Moreover, axon injury induces transient calcium influx into axonal mitochondria, dependent on MCU-1. In car-1 loss-of-function mutants and in micu-1 overexpressing animals, the axonal mitochondrial calcium influx is more sustained, which likely underlies enhanced axon regrowth. Our data uncover a novel pathway that controls axon regrowth through axonal mitochondrial calcium uptake.

摘要

mRNA 衰变因子通过招募非翻译的 mRNA 并将其靶向翻译抑制和 mRNA 降解来调节 mRNA 周转。mRNA 衰变途径如何特异性地调节体内细胞功能还知之甚少。在这里,我们表明,包括翻译抑制剂 CAR-1/LSM14 和 CGH-1/DDX6 以及脱帽酶 DCAP-1/DCP1 在内的 C. elegans mRNA 衰变因子在神经元中发挥作用,以差异调节轴突发育、维持和损伤后的再生。在神经元细胞体中,CAR-1 与 CGH-1 完全共定位,并与 DCAP-1 部分共定位,表明 mRNA 衰变成分至少形成两种类型的细胞质颗粒。在成年神经元的轴突损伤后,CAR-1 或 CGH-1 的缺失导致轴突再生和生长锥形成增加,而 DCAP-1 或 DCAP-2 的缺失导致再生减少。为了确定 CAR-1 如何抑制再生,我们使用交联和免疫沉淀为基础的方法分析了泛神经元表达 GFP::CAR-1 结合的 mRNA。在 CAR-1 的假定 mRNA 靶标中,我们研究了线粒体钙单向转运蛋白 MCU-1 的调节剂 micu-1 在轴突损伤中的作用。我们表明,car-1 的缺失导致 MICU-1 蛋白水平升高,并且 car-1 突变体中的增强轴突再生依赖于 micu-1 和 mcu-1。此外,轴突损伤诱导依赖于 MCU-1 的瞬时钙流入轴突线粒体。在 car-1 功能丧失突变体和 micu-1 过表达动物中,轴突线粒体钙内流更持续,这可能是增强轴突再生的基础。我们的数据揭示了一种通过轴突线粒体钙摄取控制轴突再生的新途径。

相似文献

引用本文的文献

7
Mitochondrial calcium exchange in physiology and disease.线粒体钙交换在生理和疾病中的作用。
Physiol Rev. 2022 Apr 1;102(2):893-992. doi: 10.1152/physrev.00041.2020. Epub 2021 Oct 26.

本文引用的文献

9
A Neuronal piRNA Pathway Inhibits Axon Regeneration in C. elegans.神经元 piRNA 通路抑制秀丽隐杆线虫的轴突再生。
Neuron. 2018 Feb 7;97(3):511-519.e6. doi: 10.1016/j.neuron.2018.01.014. Epub 2018 Jan 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验