Suppr超能文献

测试并提高基于网络的集体智慧平台的可接受性,以提高基层医疗诊所的诊断准确性。

Testing and improving the acceptability of a web-based platform for collective intelligence to improve diagnostic accuracy in primary care clinics.

作者信息

Fontil Valy, Radcliffe Kate, Lyson Helena C, Ratanawongsa Neda, Lyles Courtney, Tuot Delphine, Yuen Kaeli, Sarkar Urmimala

机构信息

UCSF Division of General Internal Medicine, San Francisco, California, USA.

UCSF Center for Vulnerable Populations, Zuckerberg San Francisco General Hospital, San Francisco, California, USA.

出版信息

JAMIA Open. 2019 Feb 1;2(1):40-48. doi: 10.1093/jamiaopen/ooy058. eCollection 2019 Apr.

Abstract

OBJECTIVES

Usable tools to support individual primary care clinicians in their diagnostic processes could help to reduce preventable harm from diagnostic errors. We conducted a formative study with primary care providers to identify key requisites to optimize the acceptability of 1 online collective intelligence platform (Human Diagnosis Project; Human Dx).

MATERIALS AND METHODS

We conducted semistructured interviews with practicing primary care clinicians in a sample of the US community-based clinics to examine the acceptability and early usability of the collective intelligence online platform using standardized clinical cases and real-world clinical cases from the participants' own practice. We used an integrated inductive-deductive qualitative analysis approach to analyze the interview transcripts.

RESULTS AND DISCUSSION

Perceived usefulness, perceived accuracy, quality assurance, trust, and ease of use emerged as essential domains of acceptability required for providers to use a collective intelligence tool in clinical practice. Participants conveyed that the collective opinion should: (1) contribute to their clinical reasoning, (2) boost their confidence, (3) be generated in a timely manner, and (4) be relevant to their clinical settings and use cases. Trust in the technology platform and the clinical accuracy of its collective intelligence output emerged as an incontrovertible requirement for user acceptance and engagement.

CONCLUSION

We documented key requisites to building a collective intelligence technology platform that is trustworthy, useful, and acceptable to target end users for assistance in the diagnostic process. These key lessons may be applicable to other provider-facing decision support platforms.

摘要

目的

能够支持个体初级保健临床医生进行诊断过程的实用工具,有助于减少诊断错误带来的可预防伤害。我们对初级保健提供者进行了一项形成性研究,以确定优化一个在线集体智慧平台(人类诊断项目;Human Dx)可接受性的关键要求。

材料与方法

我们对美国社区诊所样本中的执业初级保健临床医生进行了半结构化访谈,使用标准化临床病例和参与者自身实践中的真实临床病例,来检验集体智慧在线平台的可接受性和早期可用性。我们采用归纳 - 演绎相结合的定性分析方法来分析访谈记录。

结果与讨论

感知有用性、感知准确性、质量保证、信任和易用性成为提供者在临床实践中使用集体智慧工具所需可接受性的重要领域。参与者表示,集体意见应:(1)有助于他们的临床推理,(2)增强他们的信心,(3)及时产生,(4)与他们的临床环境和用例相关。对技术平台及其集体智慧输出的临床准确性的信任,成为用户接受和参与的一项无可争议的要求。

结论

我们记录了构建一个值得信赖、有用且目标终端用户可接受的集体智慧技术平台的关键要求,以在诊断过程中提供帮助。这些关键经验教训可能适用于其他面向提供者的决策支持平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验