Fontil Valy, Khoong Elaine C, Hoskote Mekhala, Radcliffe Kate, Ratanawongsa Neda, Lyles Courtney Rees, Sarkar Urmimala
Division of General Internal Medicine, University of California San Francisco, San Francisco, CA, United States.
UCSF Center for Vulnerable Populations, University of California San Francisco, San Francisco, CA, United States.
JMIR Res Protoc. 2019 Aug 6;8(8):e13151. doi: 10.2196/13151.
Diagnostic error in ambulatory care, a frequent cause of preventable harm, may be mitigated using the collective intelligence of multiple clinicians. The National Academy of Medicine has identified enhanced clinician collaboration and digital tools as a means to improve the diagnostic process.
This study aims to assess the efficacy of a collective intelligence output to improve diagnostic confidence and accuracy in ambulatory care cases (from primary care and urgent care clinic visits) with diagnostic uncertainty.
This is a pragmatic randomized controlled trial of using collective intelligence in cases with diagnostic uncertainty from clinicians at primary care and urgent care clinics in 2 health care systems in San Francisco. Real-life cases, identified for having an element of diagnostic uncertainty, will be entered into a collective intelligence digital platform to acquire collective intelligence from at least 5 clinician contributors on the platform. Cases will be randomized to an intervention group (where clinicians will view the collective intelligence output) or control (where clinicians will not view the collective intelligence output). Clinicians will complete a postvisit questionnaire that assesses their diagnostic confidence for each case; in the intervention cases, clinicians will complete the questionnaire after reviewing the collective intelligence output for the case. Using logistic regression accounting for clinician clustering, we will compare the primary outcome of diagnostic confidence and the secondary outcome of time with diagnosis (the time it takes for a clinician to reach a diagnosis), for intervention versus control cases. We will also assess the usability and satisfaction with the digital tool using measures adapted from the Technology Acceptance Model and Net Promoter Score.
We have recruited 32 out of our recruitment goal of 33 participants. This study is funded until May 2020 and is approved by the University of California San Francisco Institutional Review Board until January 2020. We have completed data collection as of June 2019 and will complete our proposed analysis by December 2019.
This study will determine if the use of a digital platform for collective intelligence is acceptable, useful, and efficacious in improving diagnostic confidence and accuracy in outpatient cases with diagnostic uncertainty. If shown to be valuable in improving clinicians' diagnostic process, this type of digital tool may be one of the first innovations used for reducing diagnostic errors in outpatient care. The findings of this study may provide a path forward for improving the diagnostic process.
INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/13151.
门诊医疗中的诊断错误是可预防伤害的常见原因,利用多名临床医生的集体智慧或许可以减少此类错误。美国国家医学院已确定加强临床医生协作和数字工具是改善诊断流程的一种方式。
本研究旨在评估集体智慧产出对提高门诊医疗病例(来自初级保健和紧急护理门诊就诊)诊断信心和准确性的效果,这些病例存在诊断不确定性。
这是一项实用的随机对照试验,在旧金山两个医疗系统的初级保健和紧急护理诊所中,对存在诊断不确定性的病例运用集体智慧。识别出存在诊断不确定因素的实际病例,将被录入一个集体智慧数字平台,以从该平台上至少5名临床医生贡献者那里获取集体智慧。病例将被随机分配到干预组(临床医生将查看集体智慧产出)或对照组(临床医生将不查看集体智慧产出)。临床医生将完成一份就诊后问卷,评估他们对每个病例的诊断信心;在干预病例中,临床医生将在查看该病例的集体智慧产出后完成问卷。使用考虑临床医生聚类的逻辑回归,我们将比较干预组与对照组病例在诊断信心这一主要结局以及诊断时间(临床医生做出诊断所需的时间)这一次要结局方面的情况。我们还将使用从技术接受模型和净推荐值改编而来的指标,评估对该数字工具地可用性和满意度。
在我们33名参与者的招募目标中,已招募到32名。本研究的资金支持至2020年5月,并且获得了加利福尼亚大学旧金山分校机构审查委员会的批准,有效期至2020年1月。截至2019年6月,我们已完成数据收集,并将于2019年12月完成我们提议的分析。
本研究将确定使用集体智慧数字平台在提高诊断不确定的门诊病例的诊断信心和准确性方面是否可接受、有用且有效。如果证明在改善临床医生的诊断流程方面有价值,这种类型的数字工具可能是用于减少门诊医疗诊断错误的首批创新手段之一。本研究结果可能为改善诊断流程提供一条前进的道路。
国际注册报告识别号(IRRID):DERR1-10.2196/13151。