Henke Wade C, Otolski Christopher J, Moore William N G, Elles Christopher G, Blakemore James D
Department of Chemistry , University of Kansas , 1567 Irving Hill Road , Lawrence , Kansas 66045-7582 , United States.
Inorg Chem. 2020 Feb 17;59(4):2178-2187. doi: 10.1021/acs.inorgchem.9b02758. Epub 2020 Jan 28.
Manganese tricarbonyl complexes are promising catalysts for CO reduction, but complexes in this family are often photosensitive and decompose rapidly upon exposure to visible light. In this report, synthetic and photochemical studies probe the initial steps of light-driven speciation for Mn(CO)(bpy)Br complexes bearing a range of 4,4'-disubstituted 2,2'-bipyridyl ligands (bpy, where R = Bu, H, CF, NO). Transient absorption spectroscopy measurements for Mn(CO)(bpy)Br coordination compounds with R = Bu, H, and CF in acetonitrile reveal ultrafast loss of a CO ligand on the femtosecond time scale, followed by solvent coordination on the picosecond time scale. The Mn(CO)(bpy)Br complex is unique among the four compounds in having a longer-lived excited state that does not undergo CO release or subsequent solvent coordination. The kinetics of photolysis and solvent coordination for light-sensitive complexes depend on the electronic properties of the disubstituted bipyridyl ligand. The results indicate that both metal-to-ligand charge-transfer (MLCT) and dissociative ligand-field (d-d) excited states play a role in the ultrafast photochemistry. Taken together, the findings suggest that more robust catalysts could be prepared with appropriately designed complexes that avoid crossing between the excited states that drive photochemical CO loss.
三羰基锰配合物是用于一氧化碳还原的有前景的催化剂,但该家族中的配合物通常对光敏感,在可见光照射下会迅速分解。在本报告中,合成和光化学研究探究了一系列带有4,4'-二取代2,2'-联吡啶配体(bpy,其中R = Bu、H、CF、NO)的Mn(CO)(bpy)Br配合物光驱动物种形成的初始步骤。对R = Bu、H和CF的Mn(CO)(bpy)Br配位化合物在乙腈中的瞬态吸收光谱测量表明,在飞秒时间尺度上CO配体超快损失,随后在皮秒时间尺度上发生溶剂配位。Mn(CO)(bpy)Br配合物在这四种化合物中是独特的,它具有寿命更长的激发态,不会发生CO释放或随后的溶剂配位。光敏配合物的光解和溶剂配位动力学取决于二取代联吡啶配体的电子性质。结果表明,金属到配体的电荷转移(MLCT)和离解配体场(d-d)激发态在超快光化学中都起作用。综合来看,这些发现表明,可以通过适当设计的配合物制备更稳健的催化剂,避免驱动光化学CO损失的激发态之间的交叉。