Suppr超能文献

利用人工神经网络预测加热箔隧道内的空气温度。

The Use of Artificial Neural Networks for Forecasting of Air Temperature inside a Heated Foil Tunnel.

机构信息

Department of Mechanical Engineering and Agrophysics, University of Agriculture in Krakow, 31-120 Kraków, Poland.

Department of Bioprocess, Power Engineering and Automation, University of Agriculture in Krakow, 31-120 Kraków, Poland.

出版信息

Sensors (Basel). 2020 Jan 24;20(3):652. doi: 10.3390/s20030652.

Abstract

It is important to correctly predict the microclimate of a greenhouse for control and crop management purposes. Accurately forecasting temperatures in greenhouses has been a focus of research because internal temperature is one of the most important factors influencing crop growth. Artificial Neural Networks (ANNs) are a powerful tool for making forecasts. The purpose of our research was elaboration of a model that would allow to forecast changes in temperatures inside the heated foil tunnel using ANNs. Experimental research has been carried out in a heated foil tunnel situated on the property of the Agricultural University of Krakow. Obtained results have served as data for ANNs. Conducted research confirmed the usefulness of ANNs as tools for making internal temperature forecasts. From all tested networks, the best is the three-layer Perceptron type network with 10 neurons in the hidden layer. This network has 40 inputs and one output (the forecasted internal temperature). As the networks input previous historical internal temperature, external temperature, sun radiation intensity, wind speed and the hour of making a forecast were used. These ANNs had the lowest Root Mean Square Error (RMSE) value for the testing data set (RMSE value = 3.7 °C).

摘要

准确预测温室的小气候对于控制和作物管理至关重要。由于内部温度是影响作物生长的最重要因素之一,因此准确预测温室中的温度一直是研究的重点。人工神经网络 (ANNs) 是进行预测的有力工具。我们研究的目的是阐述一种模型,该模型将允许使用 ANNs 预测加热箔隧道内温度的变化。实验研究在位于克拉科夫农业大学的加热箔隧道中进行。获得的结果作为 ANNs 的数据。进行的研究证实了 ANNs 作为进行内部温度预测的工具的有用性。在所测试的所有网络中,最好的是具有 10 个隐藏层神经元的三层感知器类型网络。该网络有 40 个输入和一个输出(预测的内部温度)。作为网络的输入,使用了先前的历史内部温度、外部温度、太阳辐射强度、风速和进行预测的小时数。这些 ANNs 在测试数据集(均方根误差 (RMSE) 值 = 3.7°C)中具有最低的 RMSE 值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验