Suppr超能文献

基于人工神经网络和响应面回归的散装储存油菜籽中植物固醇降解的预测模型。

Predictive Models of Phytosterol Degradation in Rapeseeds Stored in Bulk Based on Artificial Neural Networks and Response Surface Regression.

机构信息

Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 60-624 Poznań, Poland.

出版信息

Molecules. 2022 Apr 10;27(8):2445. doi: 10.3390/molecules27082445.

Abstract

The need to maintain the highest possible levels of bioactive components contained in raw materials requires the elaboration of tools supporting their processing operations, starting from the first stages of the food production chain. In this study, artificial neural networks (ANNs) and response surface regression (RSR) were used to develop models of phytosterol degradation in bulks of rapeseed stored under various temperatures and water activity conditions ( = 12-30 °C and = 0.75-0.90). Among ANNs, networks based on a multilayer perceptron (MLP) and a radial basis function (RBF) were tested. The model input constituted , temperature and storage time, whilst the model output was the phytosterol level in seeds. The ANN-based modeling turned out to be more effective in estimating phytosterol levels than the RSR, while MLP-ANNs proved to be more satisfactory than RBF-ANNs. The approximation quality of the ANNs models depended on the number of neurons and the type of activation functions in the hidden layer. The best model was provided by the MLP-ANN containing nine neurons in the hidden layer equipped with the logistic activation function. The model performance evaluation showed its high prediction accuracy and generalization capability ( = 0.978; = 0.140). Its accuracy was also confirmed by the elliptical joint confidence region (EJCR) test. The results show the high usefulness of ANNs in predictive modeling of phytosterol degradation in rapeseeds. The elaborated MLP-ANN model may be used as a support tool in modern postharvest management systems.

摘要

为了保持原材料中尽可能高的生物活性成分水平,需要开发支持其加工操作的工具,从食品生产链的最初阶段开始。在这项研究中,人工神经网络 (ANNs) 和响应面回归 (RSR) 被用于开发在不同温度和水分活度条件( = 12-30°C 和 = 0.75-0.90)下储存的油菜籽散装物中植物甾醇降解的模型。在 ANNs 中,测试了基于多层感知器 (MLP) 和径向基函数 (RBF) 的网络。模型输入由 、温度和储存时间构成,而模型输出是种子中的植物甾醇水平。基于 ANN 的建模在估计植物甾醇水平方面比 RSR 更有效,而 MLP-ANN 比 RBF-ANN 更令人满意。ANN 模型的逼近质量取决于隐藏层中神经元的数量和激活函数的类型。最好的模型是由具有九个神经元的隐藏层的 MLP-ANN 提供的,该隐藏层配备了逻辑激活函数。模型性能评估表明其具有很高的预测准确性和泛化能力( = 0.978; = 0.140)。其准确性也通过椭圆联合置信区(EJCR)测试得到了确认。结果表明,ANN 在油菜籽中植物甾醇降解的预测建模中非常有用。所开发的 MLP-ANN 模型可用作现代收获后管理系统的支持工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c323/9027000/465d05b1244b/molecules-27-02445-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验