文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

超顺磁性氧化铁纳米颗粒的尺寸隔离改善了 MRI、MPI 和热疗性能。

Size-isolation of superparamagnetic iron oxide nanoparticles improves MRI, MPI and hyperthermia performance.

机构信息

Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany.

Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', Via Aurelio Saffi 2, 61029, Urbino, Italy.

出版信息

J Nanobiotechnology. 2020 Jan 28;18(1):22. doi: 10.1186/s12951-020-0580-1.


DOI:10.1186/s12951-020-0580-1
PMID:31992302
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6986086/
Abstract

Superparamagnetic iron oxide nanoparticles (SPION) are extensively used for magnetic resonance imaging (MRI) and magnetic particle imaging (MPI), as well as for magnetic fluid hyperthermia (MFH). We here describe a sequential centrifugation protocol to obtain SPION with well-defined sizes from a polydisperse SPION starting formulation, synthesized using the routinely employed co-precipitation technique. Transmission electron microscopy, dynamic light scattering and nanoparticle tracking analyses show that the SPION fractions obtained upon size-isolation are well-defined and almost monodisperse. MRI, MPI and MFH analyses demonstrate improved imaging and hyperthermia performance for size-isolated SPION as compared to the polydisperse starting mixture, as well as to commercial and clinically used iron oxide nanoparticle formulations, such as Resovist® and Sinerem®. The size-isolation protocol presented here may help to identify SPION with optimal properties for diagnostic, therapeutic and theranostic applications.

摘要

超顺磁性氧化铁纳米粒子(SPION)广泛应用于磁共振成像(MRI)和磁共振粒子成像(MPI),以及磁流体热疗(MFH)。我们在这里描述了一种顺序离心方案,用于从使用常规共沉淀技术合成的多分散性 SPION 起始制剂中获得具有明确定义尺寸的 SPION。透射电子显微镜、动态光散射和纳米颗粒跟踪分析表明,通过尺寸分离获得的 SPION 分数是明确的,几乎是单分散的。与多分散起始混合物以及与 Resovist®和 Sinerem®等商业和临床应用的氧化铁纳米颗粒制剂相比,尺寸分离的 SPION 的 MRI、MPI 和 MFH 分析显示出更好的成像和热疗性能。这里提出的尺寸分离方案可能有助于鉴定出具有诊断、治疗和治疗诊断应用最佳性能的 SPION。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9901/6986086/ae2d10920f77/12951_2020_580_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9901/6986086/84b244739464/12951_2020_580_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9901/6986086/a112193a4ac3/12951_2020_580_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9901/6986086/91eac6a1fc6b/12951_2020_580_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9901/6986086/4b8092c72fef/12951_2020_580_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9901/6986086/5c147047c38d/12951_2020_580_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9901/6986086/ae2d10920f77/12951_2020_580_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9901/6986086/84b244739464/12951_2020_580_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9901/6986086/a112193a4ac3/12951_2020_580_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9901/6986086/91eac6a1fc6b/12951_2020_580_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9901/6986086/4b8092c72fef/12951_2020_580_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9901/6986086/5c147047c38d/12951_2020_580_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9901/6986086/ae2d10920f77/12951_2020_580_Fig6_HTML.jpg

相似文献

[1]
Size-isolation of superparamagnetic iron oxide nanoparticles improves MRI, MPI and hyperthermia performance.

J Nanobiotechnology. 2020-1-28

[2]
Iron oxide nanoparticle-micelles (ION-micelles) for sensitive (molecular) magnetic particle imaging and magnetic resonance imaging.

PLoS One. 2013-2-20

[3]
Influence of SPION Surface Coating on Magnetic Properties and Theranostic Profile.

Molecules. 2024-4-17

[4]
Exploring a new SPION-based MRI contrast agent with excellent water-dispersibility, high specificity to cancer cells and strong MR imaging efficacy.

Colloids Surf B Biointerfaces. 2015-2-1

[5]
Thermosensitive/superparamagnetic iron oxide nanoparticle-loaded nanocapsule hydrogels for multiple cancer hyperthermia.

Biomaterials. 2016-8-12

[6]
Enhanced Methods to Estimate the Efficiency of Magnetic Nanoparticles in Imaging.

Molecules. 2017-12-12

[7]
Comparison of commercial iron oxide-based MRI contrast agents with synthesized high-performance MPI tracers.

Biomed Tech (Berl). 2013-12

[8]
theranostic platform combining highly localized magnetic fluid hyperthermia, magnetic particle imaging, and thermometry in 3D.

Theranostics. 2024

[9]
Optimization and Design of Magnetic Ferrite Nanoparticles with Uniform Tumor Distribution for Highly Sensitive MRI/MPI Performance and Improved Magnetic Hyperthermia Therapy.

Nano Lett. 2019-5-13

[10]
Materials characterization of Feraheme/ferumoxytol and preliminary evaluation of its potential for magnetic fluid hyperthermia.

Int J Mol Sci. 2013-8-26

引用本文的文献

[1]
Ultrasmall Superparamagnetic Magnetite Nanoparticles as Glutamate-Responsive Magnetic Resonance Sensors.

Sensors (Basel). 2025-7-10

[2]
Flame-made nanoparticles for magnetic hyperthermia and MRI in colorectal cancer theranostics.

Nanoscale Adv. 2025-7-16

[3]
Resolving Inflammation: The Impact of Antiretroviral Therapy on Macrophage Traffic In and Out of the CNS.

bioRxiv. 2025-5-8

[4]
Imaging-guided precision hyperthermia with magnetic nanoparticles.

Nat Rev Bioeng. 2025-3

[5]
Evaluation of Self-Regulating Doped Ferrite Nanoparticles with Glucose, Chitosan, and Poly-Ethylene Glycol Coatings for Hyperthermia and Dual Imaging.

Int J Nanomedicine. 2025-3-29

[6]
Development of Iron Oxide Nanochains as a Sensitive Magnetic Particle Imaging Tracer for Cancer Detection.

ACS Appl Mater Interfaces. 2025-4-9

[7]
Fundamentals and Applications of Dual-Frequency Magnetic Particle Spectroscopy: Review for Biomedicine and Materials Characterization.

Adv Sci (Weinh). 2025-4

[8]
MPI performance of magnetic nanoparticles depends on matrix composition and temperature: implications for MPI signal amplitude, spatial resolution, and tracer quantification.

Nanoscale Adv. 2025-1-15

[9]
Anxiety of microbially synthesized FeO-SPIONs on embryonic/larval ontogeny in red tilapia (Oreochromis sp.).

Appl Microbiol Biotechnol. 2025-1-7

[10]
Advances in engineering nanoparticles for magnetic particle imaging (MPI).

Sci Adv. 2025-1-10

本文引用的文献

[1]
Modeling of magnetoliposome uptake in human pancreatic tumor cells in vitro.

Nanotechnology. 2019-1-30

[2]
Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications.

Adv Drug Deliv Rev. 2019-1-11

[3]
Combining Bulk Temperature and Nanoheating Enables Advanced Magnetic Fluid Hyperthermia Efficacy on Pancreatic Tumor Cells.

Sci Rep. 2018-9-4

[4]
Enhanced Methods to Estimate the Efficiency of Magnetic Nanoparticles in Imaging.

Molecules. 2017-12-12

[5]
Thermal Decomposition Synthesis of Iron Oxide Nanoparticles with Diminished Magnetic Dead Layer by Controlled Addition of Oxygen.

ACS Nano. 2017-2-14

[6]
Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications.

Sci Technol Adv Mater. 2015-4-28

[7]
Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia.

Nanomedicine (Lond). 2016-7

[8]
Purification of Nanoparticles by Size and Shape.

Sci Rep. 2016-6-8

[9]
Influence of the separation procedure on the properties of magnetic nanoparticles: Gaining in vitro stability and T1-T2 magnetic resonance imaging performance.

J Colloid Interface Sci. 2016-3-19

[10]
Imalytics Preclinical: Interactive Analysis of Biomedical Volume Data.

Theranostics. 2016-1-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索