Suppr超能文献

高效的细菌和真核生物的酪氨酸氨基酸的定点掺入蛋白质。

Efficient Site-Specific Prokaryotic and Eukaryotic Incorporation of Halotyrosine Amino Acids into Proteins.

机构信息

Department of Biochemistry and Biophysics , Oregon State University , Corvallis , Oregon 97331 , United States.

Department of Cardiovascular & Metabolic Sciences , Lerner Research Institute, Cleveland Clinic , Cleveland , Ohio 44195 , United States.

出版信息

ACS Chem Biol. 2020 Feb 21;15(2):562-574. doi: 10.1021/acschembio.9b01026. Epub 2020 Feb 10.

Abstract

Post-translational modifications (PTMs) of protein tyrosine (Tyr) residues can serve as a molecular fingerprint of exposure to distinct oxidative pathways and are observed in abnormally high abundance in the majority of human inflammatory pathologies. Reactive oxidants generated during inflammation include hypohalous acids and nitric oxide-derived oxidants, which oxidatively modify protein Tyr residues via halogenation and nitration, respectively, forming 3-chloroTyr, 3-bromoTyr, and 3-nitroTyr. Traditional methods for generating oxidized or halogenated proteins involve nonspecific chemical reactions that result in complex protein mixtures, making it difficult to ascribe observed functional changes to a site-specific PTM or to generate antibodies sensitive to site-specific oxidative PTMs. To overcome these challenges, we generated a system to efficiently and site-specifically incorporate chloroTyr, bromoTyr, and iodoTyr, and to a lesser extent nitroTyr, into proteins in both bacterial and eukaryotic expression systems, relying on a novel amber stop codon-suppressing mutant synthetase (haloTyrRS)/tRNA pair derived from the pyrrolysine synthetase system. We used this system to study the effects of oxidation on HDL-associated protein paraoxonase 1 (PON1), an enzyme with important antiatherosclerosis and antioxidant functions. PON1 forms a ternary complex with HDL and myeloperoxidase (MPO) . MPO oxidizes PON1 at tyrosine 71 (Tyr71), resulting in a loss of PON1 enzymatic function, but the extent to which chlorination or nitration of Tyr71 contributes to this loss of activity is unclear. To better understand this biological process and to demonstrate the utility of our GCE system, we generated PON1 site-specifically modified at Tyr71 with chloroTyr and nitroTyr in and mammalian cells. We demonstrate that either chlorination or nitration of Tyr71 significantly reduces PON1 enzymatic activity. This tool for site-specific incorporation of halotyrosine will be critical to understanding how exposure of proteins to hypohalous acids at sites of inflammation alters protein function and cellular physiology. In addition, it will serve as a powerful tool for generating antibodies that can recognize site-specific oxidative PTMs.

摘要

蛋白质酪氨酸(Tyr)残基的翻译后修饰(PTMs)可以作为暴露于不同氧化途径的分子指纹,并且在大多数人类炎症病理学中以异常高的丰度存在。炎症过程中产生的反应性氧化剂包括次卤酸和一氧化氮衍生的氧化剂,它们分别通过卤化和硝化氧化修饰蛋白质 Tyr 残基,形成 3-氯 Tyr、3-溴 Tyr 和 3-硝 Tyr。生成氧化或卤化蛋白质的传统方法涉及非特异性化学反应,导致产生复杂的蛋白质混合物,使得难以将观察到的功能变化归因于特定位点的 PTM,或者生成对特定位点氧化 PTM 敏感的抗体。为了克服这些挑战,我们开发了一种系统,该系统可以在细菌和真核表达系统中高效且特异性地将氯 Tyr、溴 Tyr 和碘 Tyr(以及程度较小的硝 Tyr)掺入蛋白质中,该系统依赖于一种新型琥珀终止密码子抑制突变合成酶(haloTyrRS)/tRNA 对,源自吡咯赖氨酸合成酶系统。我们使用该系统研究了氧化对高密度脂蛋白相关蛋白对氧磷酶 1(PON1)的影响,PON1 是一种具有重要抗动脉粥样硬化和抗氧化功能的酶。PON1 与高密度脂蛋白和髓过氧化物酶(MPO)形成三元复合物。MPO 在 Tyr71 处氧化 PON1,导致 PON1 酶活性丧失,但 Tyr71 的氯化或硝化对这种活性丧失的贡献程度尚不清楚。为了更好地理解这一生物学过程,并展示我们的 GCE 系统的实用性,我们在细菌和哺乳动物细胞中生成了 Tyr71 处被氯 Tyr 和硝 Tyr 特异性修饰的 PON1。我们证明 Tyr71 的氯化或硝化显著降低了 PON1 的酶活性。该工具可用于在特定位置掺入卤代酪氨酸,这对于理解蛋白质在炎症部位暴露于次卤酸时如何改变蛋白质功能和细胞生理学至关重要。此外,它将成为生成可识别特定位点氧化 PTM 的抗体的有力工具。

相似文献

1
Efficient Site-Specific Prokaryotic and Eukaryotic Incorporation of Halotyrosine Amino Acids into Proteins.
ACS Chem Biol. 2020 Feb 21;15(2):562-574. doi: 10.1021/acschembio.9b01026. Epub 2020 Feb 10.
2
Myeloperoxidase, paraoxonase-1, and HDL form a functional ternary complex.
J Clin Invest. 2013 Sep;123(9):3815-28. doi: 10.1172/JCI67478. Epub 2013 Aug 1.
4
Genetically Encoded Protein Tyrosine Nitration in Mammalian Cells.
ACS Chem Biol. 2019 Jun 21;14(6):1328-1336. doi: 10.1021/acschembio.9b00371. Epub 2019 Jun 4.
5
Semisynthetic Organisms with Expanded Genetic Codes.
Biochemistry. 2018 Apr 17;57(15):2177-2178. doi: 10.1021/acs.biochem.8b00013. Epub 2018 Apr 6.
6
Identification of Critical Paraoxonase 1 Residues Involved in High Density Lipoprotein Interaction.
J Biol Chem. 2016 Jan 22;291(4):1890-1904. doi: 10.1074/jbc.M115.678334. Epub 2015 Nov 13.
7
Improved Incorporation of Noncanonical Amino Acids by an Engineered tRNA(Tyr) Suppressor.
Biochemistry. 2016 Jan 26;55(3):618-28. doi: 10.1021/acs.biochem.5b01185. Epub 2016 Jan 8.
8
Site-specific incorporation of an unnatural amino acid into proteins in mammalian cells.
Nucleic Acids Res. 2002 Nov 1;30(21):4692-9. doi: 10.1093/nar/gkf589.

引用本文的文献

1
Design of a halogen bond catalyzed DNA endonuclease.
Proc Natl Acad Sci U S A. 2025 Apr 8;122(14):e2500099122. doi: 10.1073/pnas.2500099122. Epub 2025 Apr 1.
2
Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming.
Chem Rev. 2024 Oct 9;124(19):11008-11062. doi: 10.1021/acs.chemrev.4c00243. Epub 2024 Sep 5.
3
Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids.
Chem Rev. 2024 Sep 25;124(18):10281-10362. doi: 10.1021/acs.chemrev.3c00878. Epub 2024 Aug 9.
5
Generating Efficient Pyrrolysyl-tRNA Synthetases for Structurally Diverse Non-Canonical Amino Acids.
ACS Chem Biol. 2022 Dec 16;17(12):3458-3469. doi: 10.1021/acschembio.2c00639. Epub 2022 Nov 16.
6
Engineered bacterial host for genetic encoding of physiologically stable protein nitration.
Front Mol Biosci. 2022 Oct 24;9:992748. doi: 10.3389/fmolb.2022.992748. eCollection 2022.
7
Halogenation of tyrosine perturbs large-scale protein self-organization.
Nat Commun. 2022 Aug 17;13(1):4843. doi: 10.1038/s41467-022-32535-2.
8
Protein Tyrosine Nitration in Plant Nitric Oxide Signaling.
Front Plant Sci. 2022 Mar 11;13:859374. doi: 10.3389/fpls.2022.859374. eCollection 2022.
9
Creating a Selective Nanobody Against 3-Nitrotyrosine Containing Proteins.
Front Chem. 2022 Feb 21;10:835229. doi: 10.3389/fchem.2022.835229. eCollection 2022.

本文引用的文献

1
Genetically Encoded Protein Tyrosine Nitration in Mammalian Cells.
ACS Chem Biol. 2019 Jun 21;14(6):1328-1336. doi: 10.1021/acschembio.9b00371. Epub 2019 Jun 4.
2
Increasing Enzyme Stability and Activity through Hydrogen Bond-Enhanced Halogen Bonds.
Biochemistry. 2018 Jul 17;57(28):4135-4147. doi: 10.1021/acs.biochem.8b00603. Epub 2018 Jul 3.
3
Genetic Code Expansion: A Powerful Tool for Understanding the Physiological Consequences of Oxidative Stress Protein Modifications.
Oxid Med Cell Longev. 2018 Apr 23;2018:7607463. doi: 10.1155/2018/7607463. eCollection 2018.
4
Genetic Code Expansion in Rhodobacter sphaeroides to Incorporate Noncanonical Amino Acids into Photosynthetic Reaction Centers.
ACS Synth Biol. 2018 Jun 15;7(6):1618-1628. doi: 10.1021/acssynbio.8b00100. Epub 2018 Jun 5.
5
Structure-Energy Relationships of Halogen Bonds in Proteins.
Biochemistry. 2017 Jun 6;56(22):2794-2802. doi: 10.1021/acs.biochem.7b00022. Epub 2017 Apr 22.
6
Critical role of vascular peroxidase 1 in regulating endothelial nitric oxide synthase.
Redox Biol. 2017 Aug;12:226-232. doi: 10.1016/j.redox.2017.02.022. Epub 2017 Feb 27.
7
Protein oxidation and peroxidation.
Biochem J. 2016 Apr 1;473(7):805-25. doi: 10.1042/BJ20151227.
9
Identification of Critical Paraoxonase 1 Residues Involved in High Density Lipoprotein Interaction.
J Biol Chem. 2016 Jan 22;291(4):1890-1904. doi: 10.1074/jbc.M115.678334. Epub 2015 Nov 13.
10
Nitration of Hsp90 on Tyrosine 33 Regulates Mitochondrial Metabolism.
J Biol Chem. 2015 Jul 31;290(31):19055-66. doi: 10.1074/jbc.M115.663278. Epub 2015 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验