IEEE Trans Med Imaging. 2020 Jul;39(7):2327-2338. doi: 10.1109/TMI.2020.2969376. Epub 2020 Jan 24.
Joint image reconstruction for multiphase CT can potentially improve image quality and reduce dose by leveraging the shared information among the phases. Multiphase CT scans are acquired sequentially. Inter-scan patient breathing causes small organ shifts and organ boundary misalignment among different phases. Existing multi-channel regularizers such as the joint total variation (TV) can introduce artifacts at misaligned organ boundaries. We propose a multi-channel regularizer using the infimal convolution (inf-conv) between a joint TV and a separable TV. It is robust against organ misalignment; it can work like a joint TV or a separable TV depending on a parameter setting. The effects of the parameter in the inf-conv regularizer are analyzed in detail. The properties of the inf-conv regularizer are then investigated numerically in a multi-channel image denoising setting. For algorithm implementation, the inf-conv regularizer is nonsmooth; inverse problems with the inf-conv regularizer can be solved using a number of primal-dual algorithms from nonsmooth convex minimization. Our numerical studies using synthesized 2-phase patient data and phantom data demonstrate that the inf-conv regularizer can largely maintain the advantages of the joint TV over the separable TV and reduce image artifacts of the joint TV due to organ misalignment.
多期 CT 联合图像重建可以通过利用各期之间的共享信息来提高图像质量并降低剂量。多期 CT 扫描是顺序采集的。扫描间患者呼吸会导致小器官移位和不同期之间的器官边界不对齐。现有的多通道正则化器(如联合全变分(TV))在器官边界不对齐的情况下可能会引入伪影。我们提出了一种使用联合 TV 和可分离 TV 之间的最小卷积(inf-conv)的多通道正则化器。它对器官错位具有鲁棒性;它可以根据参数设置像联合 TV 或可分离 TV 一样工作。详细分析了 inf-conv 正则化器参数的影响。然后在多通道图像去噪设置中数值研究了 inf-conv 正则化器的性质。对于算法实现,inf-conv 正则化器是非光滑的;可以使用来自非光滑凸优化的许多主对偶算法来求解带有 inf-conv 正则化器的反问题。我们使用合成的 2 期患者数据和体模数据进行的数值研究表明,inf-conv 正则化器可以在很大程度上保持联合 TV 相对于可分离 TV 的优势,并减少由于器官错位导致的联合 TV 的图像伪影。