Suppr超能文献

基于深度学习的非均匀电导率个体化人头模型用于脑刺激

Deep Learning-Based Development of Personalized Human Head Model With Non-Uniform Conductivity for Brain Stimulation.

出版信息

IEEE Trans Med Imaging. 2020 Jul;39(7):2351-2362. doi: 10.1109/TMI.2020.2969682. Epub 2020 Jan 27.

Abstract

Electromagnetic stimulation of the human brain is a key tool for neurophysiological characterization and the diagnosis of several neurological disorders. Transcranial magnetic stimulation (TMS) is a commonly used clinical procedure. However, personalized TMS requires a pipeline for individual head model generation to provide target-specific stimulation. This process includes intensive segmentation of several head tissues based on magnetic resonance imaging (MRI), which has significant potential for segmentation error, especially for low-contrast tissues. Additionally, a uniform electrical conductivity is assigned to each tissue in the model, which is an unrealistic assumption based on conventional volume conductor modeling. This study proposes a novel approach for fast and automatic estimation of the electric conductivity in the human head for volume conductor models without anatomical segmentation. A convolutional neural network is designed to estimate personalized electrical conductivity values based on anatomical information obtained from T1- and T2-weighted MRI scans. This approach can avoid the time-consuming process of tissue segmentation and maximize the advantages of position-dependent conductivity assignment based on the water content values estimated from MRI intensity values. The computational results of the proposed approach provide similar but smoother electric field distributions of the brain than that provided by conventional approaches.

摘要

人脑的电磁刺激是神经生理学特征描述和几种神经障碍诊断的关键工具。经颅磁刺激(TMS)是一种常用的临床程序。然而,个性化 TMS 需要生成个体头部模型的管道,以提供针对特定目标的刺激。这个过程包括基于磁共振成像(MRI)对几个头部组织进行密集分割,这存在很大的分割错误的可能性,尤其是对于低对比度的组织。此外,模型中的每个组织都被赋予均匀的电导率,这基于传统容积导体建模是不现实的假设。本研究提出了一种新的方法,用于在没有解剖分割的容积导体模型中快速自动估计头部的电导率。设计了一个卷积神经网络,根据 T1 和 T2 加权 MRI 扫描获得的解剖信息来估计个性化的电导率值。这种方法可以避免耗时的组织分割过程,并最大限度地利用基于 MRI 强度值估计的水含量值进行的位置相关电导率分配的优势。所提出方法的计算结果提供了与传统方法相似但更平滑的大脑电场分布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验