Suppr超能文献

生物钟、代谢型谷氨酸受体7与微管:小脑浦肯野细胞和纹状体中型多棘神经元中目标持续时间分子编码的入门知识

Internal Clocks, mGluR7 and Microtubules: A Primer for the Molecular Encoding of Target Durations in Cerebellar Purkinje Cells and Striatal Medium Spiny Neurons.

作者信息

Yousefzadeh S Aryana, Hesslow Germund, Shumyatsky Gleb P, Meck Warren H

机构信息

Department of Psychology and Neuroscience, Duke University, Durham, NC, United States.

Department of Experimental Medical Science, Lund University, Lund, Sweden.

出版信息

Front Mol Neurosci. 2020 Jan 10;12:321. doi: 10.3389/fnmol.2019.00321. eCollection 2019.

Abstract

The majority of studies in the field of timing and time perception have generally focused on sub- and supra-second time scales, specific behavioral processes, and/or discrete neuronal circuits. In an attempt to find common elements of interval timing from a broader perspective, we review the literature and highlight the need for cell and molecular studies that can delineate the neural mechanisms underlying temporal processing. Moreover, given the recent attention to the function of microtubule proteins and their potential contributions to learning and memory consolidation/re-consolidation, we propose that these proteins play key roles in coding temporal information in cerebellar Purkinje cells (PCs) and striatal medium spiny neurons (MSNs). The presence of microtubules at relevant neuronal sites, as well as their adaptability, dynamic structure, and longevity, makes them a suitable candidate for neural plasticity at both intra- and inter-cellular levels. As a consequence, microtubules appear capable of maintaining a temporal code or engram and thereby regulate the firing patterns of PCs and MSNs known to be involved in interval timing. This proposed mechanism would control the storage of temporal information triggered by postsynaptic activation of mGluR7. This, in turn, leads to alterations in microtubule dynamics through a "read-write" memory process involving alterations in microtubule dynamics and their hexagonal lattice structures involved in the molecular basis of temporal memory.

摘要

时间与时间感知领域的大多数研究通常聚焦于亚秒级和超秒级的时间尺度、特定的行为过程以及/或者离散的神经回路。为了从更广泛的视角寻找间隔计时的共同要素,我们回顾了相关文献,并强调了开展细胞和分子研究的必要性,这类研究能够阐明时间处理背后的神经机制。此外,鉴于近期对微管蛋白功能及其对学习和记忆巩固/再巩固潜在贡献的关注,我们提出这些蛋白在小脑浦肯野细胞(PCs)和纹状体中等棘状神经元(MSNs)的时间信息编码中发挥关键作用。微管在相关神经元位点的存在,以及它们的适应性、动态结构和持久性,使其成为细胞内和细胞间水平神经可塑性的合适候选者。因此,微管似乎能够维持时间编码或记忆痕迹,从而调节已知参与间隔计时的PCs和MSNs的放电模式。这一提出的机制将控制由mGluR7的突触后激活触发的时间信息的存储。反过来,这通过一个“读写”记忆过程导致微管动力学的改变,该过程涉及微管动力学及其参与时间记忆分子基础的六边形晶格结构的改变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3ea/6965020/eabce3275725/fnmol-12-00321-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验