Touw Axel J, Verdecia Mogena Arletys, Maedicke Anne, Sontowski Rebekka, van Dam Nicole M, Tsunoda Tomonori
Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany.
Front Plant Sci. 2020 Jan 10;10:1653. doi: 10.3389/fpls.2019.01653. eCollection 2019.
The optimal defense theory predicts that plants invest most energy in those tissues that have the highest value, but are most vulnerable to attacks. In species, root-herbivory leads to the accumulation of glucosinolates (GSLs) in the taproot, the most valuable belowground plant organ. Accumulation of GSLs can result from local biosynthesis in response to herbivory. In addition, transport from distal tissues by specialized GSL transporter proteins can play a role as well. GSL biosynthesis and transport are both inducible, but the role these processes play in GSL accumulation during root-herbivory is not yet clear. To address this issue, we performed two time-series experiments to study the dynamics of transport and biosynthesis in local and distal tissues of . We exposed roots of to herbivory by the specialist root herbivore for 7 days. During this period, we sampled above- and belowground plant organs 12 h, 24 h, 3 days and 7 days after the start of herbivory. Next, we measured the quantity and composition of GSL profiles together with the expression of genes involved in GSL biosynthesis and transport. We found that both benzyl and indole GSLs accumulate in the taproot during root-herbivory, whereas we did not observe any changes in aliphatic GSL levels. The rise in indole GSL levels coincided with increased local expression of biosynthesis and transporter genes, which suggest that both biosynthesis and GSL transport play a role in the accumulation of GSLs during root herbivory. However, we did not observe a decrease in GSL levels in distal tissues. We therefore hypothesize that GSL transporters help to retain GSLs in the taproot during root-herbivory.
最佳防御理论预测,植物会将大部分能量投入到价值最高但最易受到攻击的组织中。在某些物种中,根部食草行为会导致主根(地下最有价值的植物器官)中芥子油苷(GSLs)的积累。芥子油苷的积累可能源于对食草行为的局部生物合成反应。此外,由专门的GSL转运蛋白从远端组织进行的转运也可能起作用。GSL的生物合成和转运都是可诱导的,但这些过程在根部食草行为期间芥子油苷积累中所起的作用尚不清楚。为了解决这个问题,我们进行了两个时间序列实验,以研究GSL在局部和远端组织中的转运和生物合成动态。我们用专门的根部食草动物使某植物的根遭受7天的食草行为。在此期间,我们在食草行为开始后的12小时、24小时、3天和7天对地上和地下植物器官进行采样。接下来,我们测量了GSL谱的数量和组成以及参与GSL生物合成和转运的基因的表达。我们发现,在根部食草行为期间,苄基和吲哚GSLs都在主根中积累,而我们没有观察到脂肪族GSL水平有任何变化。吲哚GSL水平的升高与生物合成和转运蛋白基因的局部表达增加相一致,这表明生物合成和GSL转运在根部食草行为期间芥子油苷的积累中都起作用。然而,我们没有观察到远端组织中GSL水平的下降。因此,我们推测GSL转运蛋白在根部食草行为期间有助于将GSLs保留在主根中。