Suppr超能文献

一种用于睡眠障碍人群的无偏、高效的睡眠-觉醒检测算法:变点解码器。

An unbiased, efficient sleep-wake detection algorithm for a population with sleep disorders: change point decoder.

机构信息

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA.

Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA.

出版信息

Sleep. 2020 Aug 12;43(8). doi: 10.1093/sleep/zsaa011.

Abstract

STUDY OBJECTIVES

The usage of wrist-worn wearables to detect sleep-wake states remains a formidable challenge, particularly among individuals with disordered sleep. We developed a novel and unbiased data-driven method for the detection of sleep-wake and compared its performance with the well-established Oakley algorithm (OA) relative to polysomnography (PSG) in elderly men with disordered sleep.

METHODS

Overnight in-lab PSG from 102 participants was compared with accelerometry and photoplethysmography simultaneously collected with a wearable device (Empatica E4). A binary segmentation algorithm was used to detect change points in these signals. A model that estimates sleep or wake states given the changes in these signals was established (change point decoder, CPD). The CPD's performance was compared with the performance of the OA in relation to PSG.

RESULTS

On the testing set, OA provided sleep accuracy of 0.85, wake accuracy of 0.54, AUC of 0.67, and Kappa of 0.39. Comparable values for CPD were 0.70, 0.74, 0.78, and 0.40. The CPD method had sleep onset latency error of -22.9 min, sleep efficiency error of 2.09%, and underestimated the number of sleep-wake transitions with an error of 64.4. The OA method's performance was 28.6 min, -0.03%, and -17.2, respectively.

CONCLUSIONS

The CPD aggregates information from both cardiac and motion signals for state determination as well as the cross-dimensional influences from these domains. Therefore, CPD classification achieved balanced performance and higher AUC, despite underestimating sleep-wake transitions. The CPD could be used as an alternate framework to investigate sleep-wake dynamics within the conventional time frame of 30-s epochs.

摘要

研究目的

腕戴可穿戴设备在检测睡眠-觉醒状态方面仍然具有挑战性,尤其是在睡眠障碍患者中。我们开发了一种新颖的、无偏的数据驱动方法来检测睡眠-觉醒,并将其与经过验证的 Oakley 算法(OA)在睡眠障碍的老年男性中与多导睡眠图(PSG)进行比较。

方法

比较了 102 名参与者的整夜实验室 PSG 与可穿戴设备同时采集的加速度计和光体积描记法数据。使用二进制分割算法检测这些信号中的变化点。建立了一个基于这些信号变化来估计睡眠或觉醒状态的模型(变化点解码器,CPD)。将 CPD 的性能与 OA 相对于 PSG 的性能进行比较。

结果

在测试集中,OA 提供的睡眠准确率为 0.85、觉醒准确率为 0.54、AUC 为 0.67、Kappa 为 0.39。CPD 的可比值分别为 0.70、0.74、0.78 和 0.40。CPD 方法的睡眠潜伏期误差为-22.9 分钟,睡眠效率误差为 2.09%,低估了睡眠-觉醒转换次数,误差为 64.4。OA 方法的性能分别为 28.6 分钟、-0.03%和-17.2。

结论

CPD 聚合了来自心脏和运动信号的信息来确定状态,以及来自这些领域的跨维度影响。因此,尽管低估了睡眠-觉醒转换次数,CPD 分类仍实现了平衡的性能和更高的 AUC。CPD 可以作为一种替代框架,在传统的 30 秒时间段内研究睡眠-觉醒动态。

相似文献

引用本文的文献

本文引用的文献

6
Heart rate variability: a tool to explore the sleeping brain?心率变异性:探索睡眠大脑的一种工具?
Front Neurosci. 2014 Dec 11;8:402. doi: 10.3389/fnins.2014.00402. eCollection 2014.
7
Human turnover dynamics during sleep: statistical behavior and its modeling.睡眠期间的人体新陈代谢动态:统计行为及其建模。
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Mar;89(3):032721. doi: 10.1103/PhysRevE.89.032721. Epub 2014 Mar 31.
10
The Vietnam Era Twin Registry: a quarter century of progress.越南时代双胞胎登记处:四分之一个世纪的进展。
Twin Res Hum Genet. 2013 Feb;16(1):429-36. doi: 10.1017/thg.2012.122. Epub 2012 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验