Suppr超能文献

利用人工智能分析和教授医疗保健中的沟通。

Using artificial intelligence to analyse and teach communication in healthcare.

机构信息

University of Sydney, School of Psychology, Centre for Medical Psychology and Evidence-Based Medicine (CeMPED), Sydney, Australia.

University of Rochester, Rochester Human-Computer Interaction Group, Rochester, New York, USA.

出版信息

Breast. 2020 Apr;50:49-55. doi: 10.1016/j.breast.2020.01.008. Epub 2020 Jan 17.

Abstract

Communication is a core component of effective healthcare that impacts many patient and doctor outcomes, yet is complex and challenging to both analyse and teach. Human-based coding and audit systems are time-intensive and costly; thus, there is considerable interest in the application of artificial intelligence to this topic, through machine learning using both supervised and unsupervised learning algorithms. In this article we introduce health communication, its importance for patient and health professional outcomes, and the need for rigorous empirical data to support this field. We then discuss historical interaction coding systems and recent developments in applying artificial intelligence (AI) to automate such coding in the health setting. Finally, we discuss available evidence for the reliability and validity of AI coding, application of AI in training and audit of communication, as well as limitations and future directions in this field. In summary, recent advances in machine learning have allowed accurate textual transcription, and analysis of prosody, pauses, energy, intonation, emotion and communication style. Studies have established moderate to good reliability of machine learning algorithms, comparable with human coding (or better), and have identified some expected and unexpected associations between communication variables and patient satisfaction. Finally, application of artificial intelligence to communication skills training has been attempted, to provide audit and feedback, and through the use of avatars. This looks promising to provide confidential and easily accessible training, but may be best used as an adjunct to human-based training.

摘要

沟通是有效医疗保健的核心组成部分,会对患者和医生的许多结果产生影响,但它既复杂又具有挑战性,难以分析和教授。基于人工的编码和审核系统既耗时又昂贵;因此,人们非常有兴趣将人工智能应用于该主题,通过使用监督和无监督学习算法的机器学习来实现。在本文中,我们介绍了健康沟通,它对患者和健康专业人员结果的重要性,以及支持该领域所需的严格的实证数据。然后,我们讨论了历史上的互动编码系统以及最近在将人工智能(AI)应用于自动化健康环境中的此类编码方面的发展。最后,我们讨论了 AI 编码的可靠性和有效性的现有证据,AI 在沟通培训和审核中的应用,以及该领域的局限性和未来方向。总之,机器学习的最新进展允许对语音进行准确的文本转录和韵律、停顿、能量、语调、情感和沟通风格的分析。研究已经确定了机器学习算法具有中等至良好的可靠性,与人工编码(或更好)相当,并确定了沟通变量与患者满意度之间的一些预期和意外关联。最后,已经尝试将人工智能应用于沟通技巧培训,以提供审核和反馈,并通过使用头像来实现。这似乎有望提供保密且易于访问的培训,但最好将其作为基于人工的培训的辅助手段。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5742/7375542/f437575d06a3/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验