Durall Claudia, Lindberg Pia, Yu Jianping, Lindblad Peter
1Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden.
2Biosciences Center, National Renewable Energy Laboratory, Golden, CO USA.
Biotechnol Biofuels. 2020 Jan 28;13:16. doi: 10.1186/s13068-020-1653-y. eCollection 2020.
Cyanobacteria can be metabolically engineered to convert CO to fuels and chemicals such as ethylene. A major challenge in such efforts is to optimize carbon fixation and partition towards target molecules.
The gene encoding an ethylene-forming enzyme was introduced into a strain of the cyanobacterium PCC 6803 with increased phosphoenolpyruvate carboxylase (PEPc) levels. The resulting engineered strain (CD-P) showed significantly increased ethylene production (10.5 ± 3.1 µg mL OD day) compared to the control strain (6.4 ± 1.4 µg mL OD day). Interestingly, extra copies of the native or the heterologous expression of PEPc from the cyanobacterium PCC 7002 () in the CD-P, increased ethylene production (19.2 ± 1.3 and 18.3 ± 3.3 µg mL OD day, respectively) when the cells were treated with the acetyl-CoA carboxylase inhibitor, cycloxydim. A heterologous expression of phosphoenolpyruvate synthase (PPSA) from in the CD-P also increased ethylene production (16.77 ± 4.48 µg mL OD day) showing differences in the regulation of the native and the PPSA from in .
This work demonstrates that genetic rewiring of cyanobacterial central carbon metabolism can enhance carbon supply to the TCA cycle and thereby further increase ethylene production.
蓝藻可通过代谢工程改造来将二氧化碳转化为燃料和化学品,如乙烯。此类研究中的一个主要挑战是优化碳固定并向目标分子分配。
将编码乙烯形成酶的基因导入到磷酸烯醇丙酮酸羧化酶(PEPc)水平升高的蓝藻PCC 6803菌株中。与对照菌株(6.4±1.4 μg mL OD天)相比,所得工程菌株(CD-P)的乙烯产量显著增加(10.5±3.1 μg mL OD天)。有趣的是,当用乙酰辅酶A羧化酶抑制剂环草定处理细胞时,CD-P中天然的PEPc额外拷贝或来自蓝藻PCC 7002的PEPc的异源表达分别提高了乙烯产量(分别为19.2±1.3和18.3±3.3 μg mL OD天)。CD-P中来自[具体物种]的磷酸烯醇丙酮酸合酶(PPSA)的异源表达也提高了乙烯产量(16.77±4.48 μg mL OD天),这表明[具体物种]中天然的和PPSA的调控存在差异。
这项工作表明,蓝藻中心碳代谢的基因重排可增强向三羧酸循环的碳供应,从而进一步提高乙烯产量。