Suppr超能文献

膜进样质谱法有助于定量理解代谢工程蓝细菌中无机碳摄取通量和碳浓缩机制。

Membrane-Inlet Mass Spectrometry Enables a Quantitative Understanding of Inorganic Carbon Uptake Flux and Carbon Concentrating Mechanisms in Metabolically Engineered Cyanobacteria.

作者信息

Douchi Damien, Liang Feiyan, Cano Melissa, Xiong Wei, Wang Bo, Maness Pin-Ching, Lindblad Peter, Yu Jianping

机构信息

Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States.

Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden.

出版信息

Front Microbiol. 2019 Jun 25;10:1356. doi: 10.3389/fmicb.2019.01356. eCollection 2019.

Abstract

Photosynthesis uses solar energy to drive inorganic carbon (Ci) uptake, fixation, and biomass formation. In cyanobacteria, Ci uptake is assisted by carbon concentrating mechanisms (CCM), and CO fixation is catalyzed by RubisCO in the Calvin-Benson-Bassham (CBB) cycle. Understanding the regulation that governs CCM and CBB cycle activities in natural and engineered strains requires methods and parameters that quantify these activities. Here, we used membrane-inlet mass spectrometry (MIMS) to simultaneously quantify Ci concentrating and fixation processes in the cyanobacterium 6803. By comparing cultures acclimated to ambient air conditions to cultures transitioning to high Ci conditions, we show that acclimation to high Ci involves a concurrent decline of Ci uptake and fixation parameters. By varying light input, we show that both CCM and CBB reactions become energy limited under low light conditions. A strain over-expressing the gene for the CBB cycle enzyme fructose-bisphosphate aldolase showed higher CCM and carbon fixation capabilities, suggesting a regulatory link between CBB metabolites and CCM capacity. While the engineering of an ethanol production pathway had no effect on CCM or carbon fixation parameters, additional fructose-bisphosphate aldolase gene over-expression enhanced both activities while simultaneously increasing ethanol productivity. These observations show that MIMS can be a useful tool to study the extracellular Ci flux and how CBB metabolites regulate Ci uptake and fixation.

摘要

光合作用利用太阳能驱动无机碳(Ci)的吸收、固定和生物量形成。在蓝细菌中,碳浓缩机制(CCM)辅助Ci的吸收,而卡尔文-本森-巴斯姆(CBB)循环中的核酮糖-1,5-二磷酸羧化酶/加氧酶(RubisCO)催化CO固定。要了解天然菌株和工程菌株中CCM和CBB循环活动的调控机制,需要能够量化这些活动的方法和参数。在此,我们使用膜进样质谱法(MIMS)同时量化蓝细菌6803中的Ci浓缩和固定过程。通过将适应环境空气条件的培养物与过渡到高Ci条件的培养物进行比较,我们发现适应高Ci涉及Ci吸收和固定参数的同时下降。通过改变光输入,我们发现CCM和CBB反应在低光照条件下都会受到能量限制。一株过表达CBB循环酶果糖-1,6-二磷酸醛缩酶基因的菌株表现出更高的CCM和碳固定能力,这表明CBB代谢物与CCM能力之间存在调控联系。虽然乙醇生产途径的工程改造对CCM或碳固定参数没有影响,但额外的果糖-1,6-二磷酸醛缩酶基因过表达增强了这两种活性,同时提高了乙醇生产率。这些观察结果表明,MIMS可以成为研究细胞外Ci通量以及CBB代谢物如何调节Ci吸收和固定的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/001a/6604854/47f06c74462c/fmicb-10-01356-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验