Ito Shou, Sakai Kiyota, Gamaleev Vladislav, Ito Masafumi, Hori Masaru, Kato Masashi, Shimizu Motoyuki
1Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502 Japan.
2Faculty of Science and Technology, Meijo University, Nagoya, Aichi 468-8502 Japan.
Biotechnol Biofuels. 2020 Jan 28;13:18. doi: 10.1186/s13068-020-1655-9. eCollection 2020.
Vanillin is the main byproduct of alkaline-pretreated lignocellulosic biomass during the process of fermentable-sugar production and a potent inhibitor of ethanol production by yeast. Yeast cells are usually exposed to vanillin during the industrial production of bioethanol from lignocellulosic biomass. Therefore, vanillin toxicity represents a major barrier to reducing the cost of bioethanol production.
In this study, we analysed the effects of oxygen-radical treatment on vanillin molecules. Our results showed that vanillin was converted to vanillic acid, protocatechuic aldehyde, protocatechuic acid, methoxyhydroquinone, 3,4-dihydroxy-5-methoxybenzaldehyde, trihydroxy-5-methoxybenzene, and their respective ring-cleaved products, which displayed decreased toxicity relative to vanillin and resulted in reduced vanillin-specific toxicity to yeast during ethanol fermentation. Additionally, after a 16-h incubation, the ethanol concentration in oxygen-radical-treated vanillin solution was 7.0-fold greater than that from non-treated solution, with similar results observed using alkaline-pretreated rice straw slurry with oxygen-radical treatment.
This study analysed the effects of oxygen-radical treatment on vanillin molecules in the alkaline-pretreated rice straw slurry, thereby finding that this treatment converted vanillin to its derivatives, resulting in reduced vanillin toxicity to yeast during ethanol fermentation. These findings suggest that a combination of chemical and oxygen-radical treatment improved ethanol production using yeast cells, and that oxygen-radical treatment of plant biomass offers great promise for further improvements in bioethanol-production processes.
香草醛是碱性预处理木质纤维素生物质在可发酵糖生产过程中的主要副产物,也是酵母生产乙醇的强效抑制剂。在从木质纤维素生物质工业生产生物乙醇的过程中,酵母细胞通常会接触到香草醛。因此,香草醛毒性是降低生物乙醇生产成本的主要障碍。
在本研究中,我们分析了氧自由基处理对香草醛分子的影响。我们的结果表明,香草醛被转化为香草酸、原儿茶醛、原儿茶酸、甲氧基对苯二酚、3,4 - 二羟基 - 5 - 甲氧基苯甲醛、三羟基 - 5 - 甲氧基苯及其各自的开环产物,这些产物相对于香草醛显示出较低的毒性,并导致乙醇发酵过程中对酵母的香草醛特异性毒性降低。此外,经过16小时的孵育后,氧自由基处理的香草醛溶液中的乙醇浓度比未处理溶液中的乙醇浓度高7.0倍,使用氧自由基处理的碱性预处理稻草浆料也观察到了类似的结果。
本研究分析了氧自由基处理对碱性预处理稻草浆料中香草醛分子的影响,从而发现这种处理将香草醛转化为其衍生物,导致乙醇发酵过程中香草醛对酵母的毒性降低。这些发现表明,化学处理和氧自由基处理相结合提高了酵母细胞的乙醇产量,并且对植物生物质进行氧自由基处理为进一步改进生物乙醇生产工艺提供了巨大的前景。