Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
Center for Natural Products Convergence Research, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea.
Bioresour Technol. 2018 May;256:312-320. doi: 10.1016/j.biortech.2018.01.123. Epub 2018 Feb 10.
The recalcitrant structure of lignocellulosic biomass is a major barrier in efficient biomass-to-ethanol bioconversion processes. The combination of feedstock engineering via modification in the lignin synthesis pathway of sugarcane and co-fermentation of xylose and glucose with a recombinant xylose utilizing yeast strain produced 148% more ethanol compared to that of the wild type biomass and control strain. The lignin reduced biomass led to a substantially increased release of fermentable sugars (glucose and xylose). The engineered yeast strain efficiently co-utilized glucose and xylose for fermentation, elevating ethanol yields. In this study, it was experimentally demonstrated that the combined efforts of engineering both feedstock and microorganisms largely enhances the bioconversion of lignocellulosic feedstock to bioethanol. This strategy will significantly improve the economic feasibility of lignocellulosic biofuels production.
木质纤维素生物质的顽固结构是高效生物量到乙醇生物转化过程中的主要障碍。通过甘蔗中木质素合成途径的修饰进行原料工程改造,并与利用木糖的重组酵母菌株共发酵木糖和葡萄糖,与野生型生物质和对照菌株相比,产生了 148%更多的乙醇。木质素减少的生物质导致可发酵糖(葡萄糖和木糖)的释放大大增加。工程酵母菌株有效地共利用葡萄糖和木糖进行发酵,提高了乙醇产量。在这项研究中,实验证明,工程改造原料和微生物的共同努力在很大程度上增强了木质纤维素原料到生物乙醇的生物转化。这种策略将显著提高木质纤维素生物燃料生产的经济可行性。