Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
Seattle Children's Research Institute, Seattle, WA 98101, USA.
Sci Adv. 2020 Jan 17;6(3):eaay7243. doi: 10.1126/sciadv.aay7243. eCollection 2020 Jan.
Microcirculatory obstruction is a hallmark of severe malaria, but mechanisms of parasite sequestration are only partially understood. Here, we developed a robust three-dimensional microvessel model that mimics the arteriole-capillary-venule (ACV) transition consisting of a narrow 5- to 10-μm-diameter capillary region flanked by arteriole- or venule-sized vessels. Using this platform, we investigated red blood cell (RBC) transit at the single cell and at physiological hematocrits. We showed normal RBCs deformed via in vivo-like stretching and tumbling with negligible interactions with the vessel wall. By comparison, -infected RBCs exhibited virtually no deformation and rapidly accumulated in the capillary-sized region. Comparison of wild-type parasites to those lacking either cytoadhesion ligands or membrane-stiffening knobs showed highly distinctive spatial and temporal kinetics of accumulation, linked to velocity transition in ACVs. Our findings shed light on mechanisms of microcirculatory obstruction in malaria and establish a new platform to study hematologic and microvascular diseases.
微血管阻塞是严重疟疾的一个标志,但寄生虫的隔离机制仅部分被理解。在这里,我们开发了一个稳健的三维微血管模型,模拟了由狭窄的 5-10μm 直径的毛细血管区域组成的动脉-毛细血管-静脉(ACV)转变,该区域两侧是动脉或静脉大小的血管。使用这个平台,我们在单细胞和生理血细胞比容下研究了红细胞(RBC)的转运。我们表明,正常的 RBC 通过类似于体内的拉伸和翻滚变形,与血管壁的相互作用可忽略不计。相比之下,感染的 RBC 几乎没有变形,并且迅速在毛细血管大小的区域积聚。与缺乏细胞黏附配体或膜变硬节的野生型寄生虫进行比较,显示出积聚的高度独特的时空动力学,与 ACV 中的速度转变有关。我们的发现揭示了疟疾中微血管阻塞的机制,并建立了一个新的平台来研究血液学和微血管疾病。