Suppr超能文献

一种基于RNA测序的新型预后列线图预测皮肤黑色素瘤患者的生存情况:临床试验/实验研究。

A novel RNA sequencing-based prognostic nomogram to predict survival for patients with cutaneous melanoma: Clinical trial/experimental study.

作者信息

Tian Jun, Yang Ye, Li Meng-Yang, Zhang Yuan

机构信息

Department of Dermatology, Shanxi Provincial People's Hospital, Xi'an.

Department of Dermatology, 63600 Hospital of PLA, Lanzhou.

出版信息

Medicine (Baltimore). 2020 Jan;99(3):e18868. doi: 10.1097/MD.0000000000018868.

Abstract

BACKGROUND

Plenty of evidence has suggested that long non-coding RNAs (lncRNAs) have played a vital part may act as prognostic biomarkers in a variety of cancers. The aim of this study was to screen survival-related lncRNAs and to construct a lncRNA-based prognostic model in patients with cutaneous melanoma (CM).

METHODS

We obtained lncRNAs expression profiles and clinicopathological data from the Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. A lncRNA-based prognostic model was established in training set. The established prognostic model was evaluated, and validated in the validation set. Then, a prognostic nomogram combining the lncRNA-based risk score and clinicopathological characteristics was developed in training set, and assessed in the validation set. The accuracy of the model was evaluated by the discrimination and calibration plots.

RESULTS

A total of 212 lncRNAs were identified to be differentially expressed in CM. After univariate analysis, LASSO penalized regression analysis, and multivariate analysis, 3 lncRNAs were used to construct risk score model. The proposed risk score model could divide patients into high-risk and low-risk groups with significantly different survival in both training set and validation set. The ROC curve showed good performance in survival prediction in both sets. Furthermore, the nomogram for predicting 3-, 5-, and 10-year OS was established based on lncRNA-based risk score and clinicopathologic factors. The prognostic accuracy of the risk model was confirmed by the discrimination and calibration plots in both training set and validation set.

CONCLUSIONS

We established a novel three lncRNA-based risk score model and nomogram to predict overall survival of CM. The proposed nomogram may provide information for individualized treatment in CM patients.

摘要

背景

大量证据表明,长链非编码RNA(lncRNA)在多种癌症中发挥着重要作用,可能作为预后生物标志物。本研究旨在筛选与皮肤黑色素瘤(CM)患者生存相关的lncRNA,并构建基于lncRNA的预后模型。

方法

我们从癌症基因组图谱(TCGA)和基因型-组织表达(GTEx)数据库中获取lncRNA表达谱和临床病理数据。在训练集中建立基于lncRNA的预后模型。对建立的预后模型进行评估,并在验证集中进行验证。然后,在训练集中开发一个结合基于lncRNA的风险评分和临床病理特征的预后列线图,并在验证集中进行评估。通过区分度和校准图评估模型的准确性。

结果

共鉴定出212种在CM中差异表达的lncRNA。经过单因素分析、LASSO惩罚回归分析和多因素分析,使用3种lncRNA构建风险评分模型。所提出的风险评分模型可将患者分为高风险和低风险组,在训练集和验证集中生存率有显著差异。ROC曲线在两组的生存预测中均表现良好。此外,基于基于lncRNA的风险评分和临床病理因素建立了预测3年、5年和10年总生存期的列线图。训练集和验证集的区分度和校准图证实了风险模型的预后准确性。

结论

我们建立了一种新的基于三种lncRNA的风险评分模型和列线图来预测CM的总生存期。所提出的列线图可为CM患者的个体化治疗提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/036e/7220347/c77b1001ae2b/medi-99-e18868-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验