IEEE Trans Med Imaging. 2020 Jul;39(7):2426-2439. doi: 10.1109/TMI.2020.2971422. Epub 2020 Feb 3.
Recently, researchers have discovered the direct impact of the tumor mechanical environment on the growth, drug uptake and prognosis of tumors. While estimating the mechanical parameters (solid stress, fluid pressure, stiffness) can aid in the treatment planning and monitoring, most of these parameters cannot be quantified noninvasively. Shear wave elastography (SWE) has shown promise as a means of noninvasively measuring the stiffness of soft tissue. However, stiffness is still not a recognized imaging biomarker. While SWE has been shown to be capable of measuring tumor stiffness in humans, much important research is done in small animal preclinical models, where tumors are often too small for the resolution of traditional SWE tools. Single-track location SWE (STL-SWE) has previously been shown to overcome the fundamental resolution limit of SWE imposed by ultrasound speckle, which may make it suitable for preclinical imaging. Using STL-SWE, in this work, we demonstrate, for the first time, that the stiffness changes occurring inside metastatic murine pancreatic tumors can be monitored over long time scales (up to 9 weeks). To prevent the respiration motion from degrading the STL-SWE estimates, we developed a real-time software-based respiration gating scheme that we implemented on a Verasonics ultrasound imaging system. By imaging the liver of three healthy mice and performing correlation analysis, we confirmed that the respiration-gated STL-SWE data was free from motion corruption. By performing coregistered power-doppler imaging, we found that the local variability in liver shear wave speed (SWS) measurements increased from 5.4% to 9.9% due to blood flow. We performed a longitudinal study using a murine model of pancreatic cancer liver metastasis to assess the temporal changes (over nine weeks) in SWS in two groups: a controlled group receiving no treatment (n=8), and an experimental group (n=6) treated with Gemcitabine, a chemotherapy agent. We independently evaluated tumor burden using bioluminescence imaging (BLI). The initial and endpoint SWS measurements were statistically different (p<0.05). Additionally, when the liver SWS exceeded 2.5 ± 0.3 and 2.73 ± 0.34 m/s in untreated and treated mice, respectively, the death of the mice was imminent within approximately 10 days. The time taken for the SWS to exceed the thresholds was 17 days (on average) longer in Gemcitabine treated mice compared to the untreated ones. The survival statistics corroborated the effectiveness of Gemcitabine. Spearman correlation analysis revealed a monotonic relationship between SWE measurements (SWS) and BLI measurements (radiance) for tumors whose radiance exceeded 1×10 photons/s/cm/sr. Longitudinal measurements on the liver of four healthy mice revealed a maximum coefficient of variation of 11.4%. The results of this investigation demonstrate that with appropriate gating, researchers can use STL-SWE for small animal imaging and perform longitudinal studies using preclinical cancer models.
最近,研究人员发现肿瘤力学环境对肿瘤生长、药物摄取和预后的直接影响。虽然估计力学参数(固体压力、流体压力、刚度)有助于治疗计划和监测,但这些参数中的大多数都不能进行非侵入性定量。剪切波弹性成像(SWE)已被证明是一种无创测量软组织硬度的方法。然而,硬度仍然不是一种公认的成像生物标志物。虽然 SWE 已被证明能够在人体中测量肿瘤硬度,但大量重要的研究是在小动物临床前模型中进行的,在这些模型中,肿瘤通常太小,传统的 SWE 工具无法分辨。单轨迹定位 SWE(STL-SWE)先前已被证明可以克服超声斑点施加的 SWE 的基本分辨率限制,这可能使其适合临床前成像。在这项工作中,我们使用 STL-SWE,首次证明转移性小鼠胰腺肿瘤内部发生的硬度变化可以在长时间尺度(长达 9 周)内进行监测。为了防止呼吸运动降低 STL-SWE 估计值,我们开发了一种基于实时软件的呼吸门控方案,并在 Verasonics 超声成像系统上实现了该方案。通过对三只健康小鼠的肝脏进行成像并进行相关分析,我们证实了呼吸门控 STL-SWE 数据没有运动伪影。通过进行核注册的功率多普勒成像,我们发现由于血流,肝脏剪切波速度(SWS)测量的局部可变性从 5.4%增加到 9.9%。我们使用胰腺癌细胞肝转移的小鼠模型进行了一项纵向研究,以评估两组的 SWS 随时间的变化(9 周):一组未接受治疗(n=8),另一组接受吉西他滨治疗(n=6),吉西他滨是一种化疗药物。我们使用生物发光成像(BLI)独立评估肿瘤负担。初始和终点 SWS 测量值具有统计学差异(p<0.05)。此外,当未治疗和治疗小鼠的肝脏 SWS 分别超过 2.5±0.3 和 2.73±0.34 m/s 时,小鼠的死亡将在大约 10 天内发生。与未治疗的小鼠相比,接受吉西他滨治疗的小鼠的 SWS 超过阈值所需的时间平均长 17 天。生存统计数据证实了吉西他滨的有效性。Spearman 相关分析显示,对于放射率超过 1×10 光子/s/cm/sr 的肿瘤,SWE 测量值(SWS)和 BLI 测量值(放射率)之间存在单调关系。对四只健康小鼠肝脏的纵向测量显示最大变异系数为 11.4%。本研究的结果表明,通过适当的门控,研究人员可以使用 STL-SWE 进行小动物成像,并使用临床前癌症模型进行纵向研究。